DOI: 10.24287/1726-1708-2020-19-1-9-17

Результаты терапии детей с острым миелоидным лейкозом и инициальным гиперлейкоцитозом по протоколу ОМЛ-ММ-2006

И.И. Калинина¹, Н.В. Захаров², Д.А. Венёв¹, Т.Ю. Салимова¹, У.Н. Петрова¹, О.В. Горонкова¹, Д.Д. Байдильдина¹, Е.В. Сунцова¹, М.Н. Садовская¹, Д.А. Евсеев¹, В.Е. Матвеев¹, К.С. Антонова¹, И.Г. Хамин¹, М.Э. Дубровина¹, Ю.В. Ольшанская¹, Е.А. Зеркаленкова¹, А.И. Манджиева¹, Д.Н. Балашов¹, Л.Н. Шелихова¹, М.А. Масчан¹, Г.А. Новичкова¹, А.А. Масчан¹

¹ ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, Москва ² КГБУ «Красноярский краевой клинический центр охраны матери и детства» Минздрава России, Красноярск

Прогностическая роль гиперлейкоцитоза (ГЛ) при остром миелоидном лейкозе (ОМЛ) дискутабельна. В НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздрава России 185 пациентов с ОМЛ получали терапию по протоколу ОМЛ-ММ-2006, в том числе 36 (19,5%) пациентов с ГЛ. Данное исследование поддержано Независимым этическим комитетом и утверждено решением Ученого совета НМИЦ ДГОИ. Медиана уровня лейкоцитов составила $97 \pm 10^{\circ}$ /л $(50-428 \pm 10^{\circ}/\text{л})$. В группу высокого риска вошли 24 пациента, промежуточного риска – 8, стандартного – 4 пациента. Чаще встречался М5/М4 вариант ОМЛ по FAB-классификации – 30 пациентов. Самой частой генетической перестройкой была перестройка гена MLL – у 15 (42%) пациентов. Циторедукцию получили 35 пациентов, затем все получили блок ADE, а 21 пациент - вторую часть индукции, блок НАМ. Ремиссии достигли 27 (77%) пациентов; ТГСК провели 23 пациентам; умерли 13 (36%) из 36; от лейкостаза – 4 (11%) человека. Для пациентов группы ГЛ общая выживаемость (OS) составила 0.56 ± 0.09 ; для группы без ГЛ -0.75 ± 0.04 (p = 0.005); безрецидивная выживаемость (EFS) в группе $\Gamma\Pi - 0.42 \pm 0.09$; EFS в группе без $\Gamma\Pi - 0.49 \pm 0.04$ (р = 0,026). Статистически значимы были также достижение ремиссии, медиана продолжительности ремиссии, смерть до ремиссии (p = 0.036; p = 0.028; p = 0.021 соответственно). У пациентов с M4/M5, получающих циторедукцию при уровне лейкоцитов более $50 \pm 10^{\circ}$ /л, показатели OS и EFS были лучше, чем у пациентов с лейкоцитами более 100 ± 10^{9} /л во всей группе: $OS - 0.71 \pm 0.1$ и 0.43 ± 0.1 (p = 0.012); EFS $- 0.54 \pm 0.1$ и 0.29 ± 0.1 (p = 0.038) соответственно. Гиперлейкоцитоз ухудшает OS и EFS у детей с ОМЛ.

Ключевые слова: дети, острый миелоидный лейкоз, гиперлейкоцитоз, лейкостаз

Калинина И.И. и соавт. Вопросы гематологии/онкологии и иммунопатологии в педиатрии, 2020; 19 (1): 9–17.

DOI: 10.24287/1726-1708-2020-19-1-9-17

© 2020 ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева» Минздрава России

Поступила 19.09.2019 Принята к печати 28.10.2019

Контактная информация:

Калинина Ирина Игоревна, врач-гематолог отделения детской гематологии/ онкологии НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздрава России. Адрес: 117997, Москва, ГСП-7, ул. Саморы Машела, 1 E-mail: irina.kalinina@fccho-moscow.ru

The results of treatment in children with AML and initial hyperleucocytosis according to the AML-MM-2006 Protocol

I.I. Kalinina¹, N.V. Zacharov², D.A. Venev¹, T.Yu. Salimova¹, U.N. Petrova¹, O.V. Goronkova¹, D.D. Baydildina¹, E.V. Suntcova¹, M.N. Sadovskay¹, D.A. Evseev¹, V.E. Matveev¹, K.S. Antonova¹, I.G. Khamin¹, Yu.V. Olshanskaya¹, E.A. Zerkalenkova¹, A.I. Mandgieva¹, D.N. Balashov¹, L.N. Shelikhova¹, M.A. Maschan¹, G.A. Novichkova¹, A.A. Maschan¹

¹ Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation, Moscow ² Krasnoyarsk Clinical Center of maternity and childhood, Krasnoyarsk

The prognostic role of HL in AML in children is a matter of a discussion. 185 patients were treated for AML in our center, 36 of 185 had HL (19.5%). The study was approved by the Independent Ethics Committee of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology. Median Le was $97 \times 10^{\circ}$ /l ($50-428 \pm 10^{\circ}$ /l). Standard risk group were 4 pts, intermediate – 8, hight – 24. The most common variants were M4/M5 in FAB classification – 30 pts and genetic rearrangement – MLL in 15 of 36 pts. Thirty-five patients with HL received cytoreduction course and ADE. After that, all patients received ADE and 21 pts second part of induction – course HAM. Remission was achieved in 27 (75%) out of 36 pts. HSCT was performed in 23 pts. Thirteen out of 36 patients with HL died: 4 (30%) – due to leukostasis complications. OS for HL group was 0.56 ± 0.09 , for non-HL group was 0.75 ± 0.04 , p = 0.005; EFS (HL) 0.42 ± 0.09 , EFS (non-HL) 0.49 ± 0.04 , p = 0.026. Also, differences in I CR achievement, median of remission length and death before remission between two groups were statistically significant (p = 0.036; p = 0.028; p = 0.021 respectively). OS and EFS in patients with M4/M5 with HL > $50 \pm 10^{\circ}$ /l were better than in patients all FAB with HL > $100 \pm 10^{\circ}$ /l, OS 0.71 ± 0.1 vs OS 0.43 ± 0.1 (p = 0.012); EFS 0.54 ± 0.1 vs EFS 0.29 ± 0.1 (p = 0.038) respectively. HL significantly worsens

Key words: children, acute myeloid leukemia, hyperleukocytosis, leukostasis

Kalinina I.I., et al. Pediatric Hematology/Oncology and Immunopathology, 2020; 19 (1): 9–17. DOI: 10.24287/1726-1708-2020-19-1-9-17 © 2020 by «D. Rogachev NMRCPHOI» Received 19.09.2019 Accepted 28.10.2019

Correspondence:

Irina I. Kalinina, MD, Pediatrician Hematologist, Department of Pediatric Hematology/Oncology of Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation. Address: Russia 117997, Moscow, Samory Mashela st., 1
E-mail: irina.kalinina@fccho-moscow.ru

структуре онкологических заболеваний детского возраста наибольшая доля принадлежит острым лейкозам, из них на долю острого миелоидного лейкоза (ОМЛ) приходится 14-19% [1]. Благодаря внедрению современных протоколов интенсивной химиотерапии, аллогенной трансплантации гемопоэтических клеток (ТГСК) и усовершенствованию технологии сопроводительной терапии показатели общей долгосрочной выживаемости при ОМЛ в развитых странах приближаются к 65-70%. На каждом из этапов лечения ОМЛ приходится сталкиваться с осложнениями либо самого заболевания. либо его терапии, которые являются потенциально жизнеугрожающими. На начальном этапе терапии самый грозный фактор риска ранней летальности гиперлейкоцитоз (ГЛ), который встречается у 5-20% пациентов с первично диагностированным ОМЛ. В большинстве протоколов ГЛ при ОМЛ - это повышение количества лейкоцитов (WBC) более $100 \times 10^9 / \pi$ [1, 2], однако эта цифра условная, самое опасное осложнение ГЛ – лейкостаз – может развиваться при существенно более низком числе лейкоцитов.

Гиперлейкоцитоз — жизнеугрожающее клиническое проявление ОМЛ с высоким риском фатального повреждения легких и головного мозга — требует незамедлительного начала циторедуктивной терапии и мультидисциплинарного ведения с активным участием детских реаниматологов [3]. По данным литературы, риск ранней смерти максимален у пациентов с числом WBC > $200 \times 10^9/\pi$ [4].

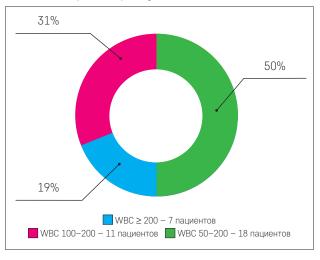
Ассоциация ГЛ с повышенным риском ранней летальности неоспорима, но его независимое от других факторов прогноза (цитогенетических характеристик, молекулярно-генетических аномалий) влияние на эффективность стандартной химиотерапии и показатели безрецидивной выживаемости дискутабельны. В данной статье мы анализируем исходы терапии пациентов с впервые диагностированным ОМЛ и инициальным ГЛ, получавших лечение согласно единому протоколу в крупном специализированном центре детской гематологии/онкологии.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследование поддержано Независимым этическим комитетом и утверждено решением Ученого совета НМИЦ ДГОИ им. Дмитрия Рогачева Минздрава России. С февраля 2012 по декабрь 2017 года 185 пациентов (105 мальчиков и 80 девочек) в возрасте от 7 дней до 18 лет (медиана – 7 лет) с впервые диагностированным ОМЛ получили терапию по протоколу ОМЛ–ММ–2006. Пациентов с промиелоцитарным лейкозом, вторичным ОМЛ, миелосаркомой без поражения костного мозга в данное исследование не включали.

Согласно протоколу ГЛ определяли как уровень WBC > 50×10^9 /л для пациентов с M4–M5 FAB-субвариантами ОМЛ и WBC > 100×10^9 /л – для всех других субвариантов.

Статистический анализ выполнен при помощи программного обеспечения XLSTAT и электронной таблицы Excel. Вероятность общей и бессобытийной выживаемости рассчитана по методу Каплана-Майера; кумулятивная вероятность - по методу конкурирующих рисков. Для непараметрических количественных данных определяли медиану, максимум и минимум вариационного ряда. Живые пациенты цензурировались на момент статистической обработки данных (декабрь 2017 года). Достоверность различий между исследуемыми группами вычисляли по методу Манна-Уитни с помощью критерия χ^2 , точного теста Фишера. Оценивали доверительную вероятность р: различия считали достоверными при $p \le 0.05$. За событие принимали: смерть от любых причин, рецидив, рефрактерность после курса индукции.


РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Для всей группы пациентов медиана WBC составила 13.6×10^{9} /л $(0.3 \times 10^{9}$ /л $- 428 \times 10^{9}$ /л). Инициальный ГЛ зафиксирован у 36 (19.5%) пациентов (17 девочек и 19 мальчиков). Медиана возраста пациентов с ГЛ - 7 лет 8 мес. (от 7 дней до 18 лет); возраст 4 пациентов был менее 1 года. Медиана WBC для группы с ГЛ - 97 \times 10 9 /л (50-428 \times 10 9 /л).

Пациентов разделили на три группы: 1-я группа — 7 человек с WBC > 200×10^9 /л; 2-я группа — 11 человек с WBC от 100 до 200×10^9 /л: 3-я группа — 18 человек с WBC от 50 до 100×10^9 /л (рисунок 1). Чаще встречался М5 вариант ОМЛ согласно

Рисунок 1Распределение пациентов в зависимости от количества лейкоцитов
Figure 1

Distribution of the patients depending on the number of white blood cells count

FAB-классификации – у 18 (50%) пациентов; M4 – у 14 (39%); M1 – у 3 (8%) и M2 – у 1 (3%) пациента.

Клинические особенности в данной группе: у 31 пациента отмечено наличие гепатомегалии; медиана — 2 см (от 0 до 8 см из-под края реберной дуги); у 24 пациентов — спленомегалия; медиана — 1,5 см (от 0 до 12 см из-под края реберной дуги). Экстрамедулярное/экстрагемопоэтическое поражение наблюдалось у 9 пациентов; чаще — поражение кожи и подкожно-жировой клетчатки — у 4 пациентов; по одному случаю — плеврит, поражения яичек, орбиты, мягких тканей бедра, лимфатических узлов вместе со слюнной железой и окружающими мягкими тканями.

Достоверно оценить наличие инициального поражения центральной нервной системы (ЦНС) было сложно в связи с тем, что 22 (61%) пациентам из 36 первичную люмбальную пункцию проводили только по окончании курса индукционной химиотерапии; 3 пациентам ее не проводили из-за смерти (2 пациента) или тяжести состояния (1 пациент). У 8 пациентов выявлен ЦНС, статус II (наличие бластов при цитозе ликвора < 5 мононуклеаров в 1 мкл); статус III (наличие бластов, цитоз ликвора > 10 мононуклеаров в 1 мкл) – у одного; статус IV (наличие бластов, цитоз ликвора > 10 мононуклеаров в 1 мкл) – у 2 пациентов.

Цитогенетические характеристики лейкозных клеток пациентов с ГЛ представлены в таблице 1. Наиболее частой цитогенетической аномалией была перестройка гена MLL – у 15 (41,6%) из 36 пациентов, при этом в группе пациентов с реаранжировкой гена MLL более половины составляли пациенты с t(10;11) и t(9;11) (рисунок 2).

Терапия. Всем 36 пациентам, кроме одного, провели специфическую полихимиотерапию (ПХТ);

Рисунок 2
Варианты перестроек гена *MLL* у пациентов с гиперлейкоцитозом

Figure 2

Variants of MLL gene rearrangements in patients with hyperleukocytosis

у одного пациента констатировали спонтанную клинико-гематологическую ремиссию через 17 дней после установления диагноза ОМЛ. Все пациенты с ГЛ перед началом основной индукционнной ПХТ получали циторедуктивную терапию: даунорубицин — $22,5~\text{мг/m}^2/\text{сут}$ и этопозид — $50~\text{мг/m}^2/\text{сут}$, постоянной инфузией, до тех пор, пока уровень лейкоцитов не составит $50 \times 10^9/\text{л}$; далее — курс цитарабина, даунорубицина и этопозида (ADE) с пропорционально редуцированными дозами даунорубицина и ADE. Медиана длительности циторедуктивной фазы — 3~дня (от 2~до 6 дней).

Одновременно с циторедуктивной терапией пациенты получали профилактику синдрома опухолевого лизиса (СОЛ): гиперинфузию; аллопуринол или разбуриказу; дексаметазон — 0,6—0,8 мг/кг/сут; пентоксифиллин — 20 мг/кг/сут, постоянной инфузией. До снижения лейкоцитоза менее 50×10^{9} /л содержание гемоглобина в крови поддерживали на уровне не более 70 г/л; концентрат тромбоцитов переливали для поддержания их уровня более 50×10^{9} /л.

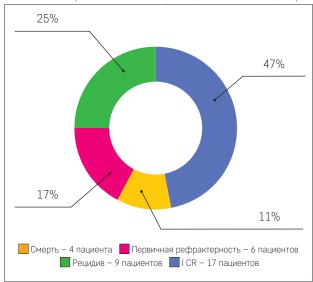
Только двум пациентам выполнили однократные процедуры физического удаления лейкоцитов — лейкацитоферез или заменное переливание крови. Курс ADE получили все 35 пациентов; блок НАМ (15-й и 16-й дни) — лишь 20 (62,5%) пациентов из 32, которым он был предписан протоколом. Полная клинико-гематологическая ремиссия (ПР) ОМЛ после курса индукции достигнута у 27 (75%) пациентов. В дальнейшем 4 из 6 пациентов, пережившие курс индукции, но не достигшие ремиссии, достигли ПР после следующих блоков ПХТ и/или ТГСК — всего частота достижения ремиссии составила 86% (31 из 36 пациентов).

От осложнений лейкостаза умерли 4 пациента: трое – до 14-го дня от начала химиотерапии; один (с массивным внутримозговым кровоизлиянием на ранних сроках терапии) был признан инкурабельным, не получал дальнейшей химиотерапии и умер в поздние сроки от полиорганной недостаточности.

Постиндукционная терапия. Согласно протоколу инициальные показания к проведению ТГСК имели 24 (67%) из 36 пациентов группы ГЛ. Еще у 4 пациентов показания к проведению ТГСК возникли после рецидива ОМЛ (один пациент — из группы стандартного риска; трое — из группы промежуточного риска). Запланированную ТГСК провели 23 пациентам; 5 пациентов не получили ТГСК (трое — в связи со смертью в индукции; двое — из-за прогрессии ОМЛ). ТГСК от НLА-идентичного родственного донора проведена трем пациентам в ПР I (все они живы). ТГСК от гаплоидентичного семейного донора выполнена 11 пациентам, в том числе 8 — в ПР I (7 — живы; один умер

Таблица 1

Цитогенетические характеристики лейкозных клеток пациентов с гиперлейкоцитозом


Cytogenetic characteristics of leukemia cells in patients with hyperleukocytosis

No	Стандартная цитогенетика Standard cytogenetics	Молекулярная биология Molecular biology		
1	46XY	t(11;19) ELL MLL/ELL		
2	46XY	He обнаружены / Not detected		
3	46XY, del(13)(q12;p14)(1)/46XY(19)	He обнаружены / Not detected		
4	46XX,der(8?)add(q24), +der(12?)add(q24), +mar(cp3)/46,XX(17)	FLT3		
5	Трисомия 13 хромосомы / Trisomy 13	t(2;11)		
6	46XX	He обнаружены / Not detected		
7	Сложная форма t(10;11) с перестройкой гена MLL A complex form of t(10; 11) with MLL gene rearrangement	t(10;11) MLL/AF10		
8	46-53, XX, +1, +4, +6, +7, +8,del(11q23), +16,der(19) t(11;19)(q23;p13?), +mar(10)	t(11;19)ENL MLL/ENL		
9	Heт митозов / No mitosis	He обнаружены / Not detected		
10	49XX, +X, +6, +8, t(10;11)(p13;q23), del(12p)(10)	t(10;11) MLL/AF10		
11	Методом FISH обнаружена нетипичная перестройка гена MLL The atypical MLL gene rearrangement was detected by FISH	t(10;11) MLL/AF10		
12	Обнаружено 2 клона при стандартном кариотипировании: 1-й - с трисомией 8 ; 2 -й - с дериватом 19 хромосомы 2 clones were found: the $1^{\rm st}$ – with trisomy 8 , the $2^{\rm nd}$ – with the derivative chromosome 19	FLT3		
13	45X,-Y,t(8;21)(15)/46XY	t(8;21) AML/ETO		
14	+8, t(11;14)(p13;q11)del(12). Методом FISH обнаружена перестройка TCR alpha/delta The TCR alpha/delta rearrangement was detected by the FISH	Нет данных / Not data		
15	46–47XY, -8, del99)(q22,add11(q23)+12, +12, -22. Методом FISH обнаружена аберрантная форма t(9;11). MLL в отпечатке лимфоузла The aberrant form of t(9;11) was found by FISH. MLL in the lymph node imprint	t(9;11) MLL/AF9		
16	46XX,der(1)inv?(1)(p12p36),der99)del(p13),der(11)del(p14)add(q23),der(20?)add(p13) (4)/46XX,der(1)inv?(1)(p12p36),der99)del(p13),der(11)del(p14)add(q23),der(12) add(p11),der(20?)add(p13)(16)	t(9;11) MLL/AF9		
17	48XX,t(4;11)(q21;q23);+der(4)t(4;11),+8(16)/51,XX,t(4;11),+der(4)t(4;11)*2, +8,+8,+19(2)/47, XX,+der(1)del(1)(p13),t(4;11)(q21;q23)/46,XX(1) MLL/AFF1 t(4;11)	t(4:11) MLL/ AF6		
18	46XY	c-kit		
19	47XX,del(1)(p35),+8,t(11;19)(q23;p13.3)(20)	t(11;19)ENL MLL/ENL		
20	46XY	He обнаружены / Not detected		
21	t(9;11)(p21;q23)	t(9;11) MLL/AF9		
22	47XY,+8,t(9;11)(p12;q23)(10)	t(9;11) MLL/AF9		
23	46XY	FLT3		
24	t(10;11)(p11;q23); методом FISH обнаружена перестройка гена <i>MLL</i> MLL gene rearrangement was detected by FISH	t(10;11) MLL/AF10		
25	Нет митозов. Методом FISH обнаружена перестройка гена ETV6 с делецией 3-конца ETV6 gene rearrangement with 3-end deletion was detected by FISH method	ETV6		
26	46XX	He обнаружены Not detected		
27	46XY	He обнаружены / Not detected		
28	47XY,+8,der(11)add(q23)(7), перестройка гена <i>MLL</i> <i>MLL</i> gene rearrangement was detected	He обнаружены / Not detected		
29	45XX,-9,der(10)add(p12),del(10)(p11),der(19) / t(9;19)(p13;q13)(7). t(10;11) MLL/AF10	t(10;11) MLL/AF10 FLT3		
30	Нет данных / Not data	Нет данных / Not data		
31	Нет митозов / No mitosis Методом FISH обнаружена перестройка гена <i>CBFB</i> (inv16) CBFB (inv16) gene rearrangement was detected by FISH	inv(16) CBFB/MYH11		
32	inv(16)	inv(16) CBFB/MYH11		
33	Heт митозов / No mitosis Методом FISH перестроек на обнаружено / Rearrangements were not detected by FISH	FLT3 + NPM1		
34	inv(16)	inv(16) CBFB/MYH11		
35	Моносомия 7 в 98% ядер / Monosomy 7 in 98% of nuclei	He обнаружены / Not detected		
36	inv(16)	inv(16) CBFB/MYH11		

Рисунок 3

Первое событие у пациентов с гиперлейкоцитозом при ОМЛ Figure 3

The first event in patient with HL in AML/Death, failure of induction, relapse

от рецидива); 3 - в статусе активного заболевания (все умерли). ТГСК от неродственного донора провели 11 пациентам: 7 - в ПР I (4 - живы; 3 - умерли); одному - в активной фазе заболевания (умер от рецидива после ТГСК); одному - в ПР II (пациент жив).

Таким образом, в первой или второй ПР живы 15 (62,5%) из 24 реципиентов ТГСК. Инициально ТГСК не планировали 12 пациентам из группы стандартного и промежуточного цитогенетического риска: 10 (83%) из них достигли ПР1; полностью завершили протокол только 6 (50%) пациентов — они остаются в ПР1; никто из пациентов не умер от осложнений дальнейшей ПХТ. У 3 (25%) пациентов развился рецидив ОМЛ; двое были рефрактерны к первой линии терапии; один пациент умер в ПР от полиорганной недостаточности.

Медиана продолжительности ремиссии во всей группе больных с ГЛ составила 12 мес. (от 1,6 до 63 мес.). Первое событие представлено на рисунке 3.

Таблица 2 **Характеристика пациентов с рецидивом ОМЛ в группе пациентов с гиперлейкоцитозом**Table 2 **Characteristics of patients with recurrent AML in HL group**

Olle	Characteristics of patients with recurrent AME in the group								
Пациент	Возраст Аge	Группа риска Risk group	WBC \times 10 9 /л	Титульная транслокация Main translocation	Продолжитель- ность ПР1, мес Duration CR 1, months	Терапия рецидива Relapse therapy	ΠP2 CR2	TFCK BMT	Исход Outcome
1	17 лет 17 years		246	t(11;19)	9,5 Mec. 9,5 months	Вайдаза + велкейд + вальпроевая кислота + DLI + TГСК 2 (гапло) Vidaza + VelcVidaza + Velcade + Valproic acid + DLI + HSCT 2 (haplo)	Нет No	1-я - в ПР1 in CR1 2-я – в AD in AD	Смерть после второй ТГСК (сепсис) Death after the second HSCT (sepsis)
2	14 дней 14 years	Выс. HR	100	t(2;11)	2,8 mec. 2,8 months	FLAM	Да Yes	B ΠP2 CR2 MUD	Жив в ПР2 Alive in CR2
3	1,5 года years	Выс. HR	79	t(10;11)	8,2 Mec. 8,2 months	CLAM + TГСК2 (гапло / haplo)	Да Yes	1-я — в ПР 1-я — in CR1 2-я — в AD 2-я — in AD	Жив в ПР2 Alive in CR2
4	3 года 3 years	Выс. HR	89	t(11;19)	1,7 Mec. 1,7 months	CLAM	Да Yes	Гапло в AD Haplo in AD	Смерть от прогрессии (2-й рецидив после гапло) Death from progression (2nd relapse after haplo)
5	3 года 3 years	Пром. IR	195	Нет No	5,5 мес. 5,5 months	Неларабин (рецидив Т-ОЛЛ) Netarabin (T-ALL retapse)	Нет No	Гапло в AD Haplo in AD	Смерть от прогрессии Death from progression
6	3 года 3 years	Выс. HR	100	Complex	14,7 мес. 14,7 months	Терапия ОЛЛ, высокий риск + блинатумумаб (в рецидиве ОБЛ) Therapy ALL, HR + blinatumomab (relapse ABL)	Да Yes	1-я (алло неродственная) в ПР1 MUD, 1st PR	Смерть в день 0 (сепсис) после кондиционирования перед второй ТГСК Death on day 0 (sepsis) after conditioning before the second HSCT
7	18 лет 18 years	Пром. IR	60	Нет No	2 mec. 2 months	Терапия по протоколу ОЛЛ МБ-2015 (в рецидиве ОЛЛ) Protocol ALL-MB-2015 therapy (relapse ALL)	Да Yes	Нет No	Жив в ПР1 Alive in CR1
8	9 лет 8 мес. 9 years 8 moth	Выс. HR	165	t(11;19)	4 mec. 4 months	FLAM	Да Yes	Гапло в ПР1 Haplo in CR1	Смерть от прогрессии (комбинированный рецидив после гапло-ТГСК) Death from progression (combined relapse after haplo HSCT)
9	2,5 года 2,5 years		160	inv(16)	4,4 mec. 4,4 months	Дакоген (рецидив молекулярный) Dacogen (molecular relapse)	Да Yes	Гапло в ПР1 (сохранение транскрипта) Haplo in AD	Жив в ПР1 Alive in CR1

Примечание / Notes: Ст. — стандартная / standard; Пром. — промежуточная / intermediate; Выс. — высокая / high; DLI — инфузия донорских лимфоцитов / donor lymphocytes infusion; ПР — полная ремиссия / CR — complete remission; AD — активное заболевание / active disease; ТГСК — трансплантация гемопоэтических стволовых клеток / HSCT — hematopoietic stem cell transplantation; ОПП — острый лимфобластный лейкоз / acute lymphoblastic leukemia; ОБП — острый бифенотипический лейкоз / acute biphenotypic leukemia; FLAM — флюдарабин, цитозар, митоксантрон / fludarabine, cytarabine, mitoxantrone; CLAM — кладрибин, цитозар, митоксантрон / cladribine, cytarabine, mitoxantrone.

Рецидивы. У 9 (33%) из 27 пациентов, достигших ПР1 после индукционной ПХТ, констатирован рецидив основного заболевания; только у одного из них рецидив был поздним (через 1 год и 4 мес.); у 8 пациентов отмечен ранний рецидив. Медиана развития рецидива — через 4 мес. от констатации ПР1 (от 1,7 до 10 мес.). Характеристика пациентов с рецидивом ОМЛ в группе пациентов с ГЛ представлена в таблице 2.

Всего из 31 пациента, у которых на каком-либо этапе терапии была достигнута ПР1, рецидив зарегистрирован у 10 (32%), причем у 2 пациентов лейкемические клетки в рецидиве имели смешанный (миело + лимфо), а у одного пациента со сверхранним рецидивом (через 2 мес. от достижения ПР1) — лимфоидный фенотип. Медиана безрецидивного интервала составила 8,8 мес. (от 1,7 до 16 мес). Всем рецидивировавшим пациентам сделана попытка куративной терапии; 4 из них живы: трое — после ТГСК; один — без трансплантации после химиотерапии согласно протоколу ОЛЛ. Медиана длительность текущей ремиссии у 4 выживших пациентов составила 8,8 мес. (от 2,8 до 16 мес.).

Из четырех пациентов, рефрактерных к индукционной терапии и в дальнейшем достигших ПР1, которым провели ТГСК, живы двое; один умер от рецидива после ТГСК, один – от вирусной инфекции после ТГСК в ПР1.

Структура летальных исходов. В группе пациентов с ГЛ умерли 13 (36%) из 36 человек, в том числе 4 (30%) — из-за осложнений, связанных с лейкостазом (трое — до ремиссии ОМЛ): непосредственными причинами их смерти стал лейкостаз с поражением легких и ЦНС, а также развитие ДВС-синдрома и СОЛ. У одной пациентки на фоне лейкостаза при содержании лейкоцитов $428 \times 10^9/$ л с поражением ЦНС развилось кровоизлияние в головной мозг, кома; после достижения ПР1 ребенок был признан некурабельным в связи с вегетативным статусом (смерть наступила от полиорганной недостаточности).

От прогрессии основного заболевания умерли 6 (46%) из 13 пациентов; четверо — после ТГСК. От осложнений, связанных с проведением ТГСК, умерли два пациента; одна из них — в день 0 после кондиционирования перед повторной ТГСК.

Таким образом, на сегодняшний день среди пациентов с инициальным ГЛ живы 23 (54%) из 36 пациентов: 19 – в ПР1 и 4 – в ПР2.

Сравнение инициальных характеристик и исходов терапии у пациентов с ГЛ и без ГЛ. Основным статистически значимым различием в проведенном исследовании стала вероятность «смерти в индукции» пациентов с ГЛ, что повлияло также на вероятность достижения ремиссии. Кроме того, у пациентов с ГЛ продолжительность ПР1 была

Таблица 3

Сравнительная таблица результатов терапии в группе пациентов с ОМЛ с ГЛ и без ГЛ

Table 3
Comparative table of treatment results in a group of patients with AML with and without HL

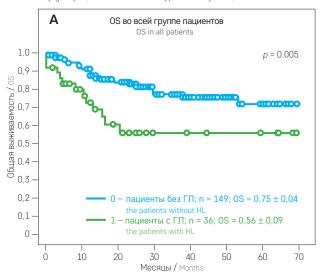
of patients with A	ML with and	without HL		
Показатель Indicator	Группа пациентов с ГЛ Group of patients with HL	Группа пациентов без ГЛ Group of patients without HL	р где применимо where applicable	
Количество пациентов Number of patients	36	149		
Мальчики : Девочки boys : girls	19:17	86 : 63	0,6	
Соотношение ratio	1,1:1	1,4:1		
Медиана возраста Median age	7 лет 8 мес. (7 дней–18 лет)	8 лет 7 мес. (5 мес.–18 лет)	0,78	
Наиболее частый вариант по FAB- классификации The most frequent option by FAB classificationmedian	M5	M5		
WBC (медиана / median)	97 × 10°/л (50-428)	9,2 × 10 ⁹ /л (0,3-79)	0,0001	
Гепатомегалия Hepatomegaly	31 пациент (86%)	100 пациентов (67%)	0,025	
Спленомегалия Splenomegaly	24 пациента (67%)	61 пациент (41%)	0,006	
Нейролейкоз Neuroleukemia	9 (25%)	40 (27%)	0,8	
Экстрамедуллярное поражение Extramedullary lesions	9 (25%)	24 (16%)	0,2	
MLL : CBF : NK	15:6:8	18:33:24	0,017	
Группа риска Risk group				
Стандартная Standard	4 (11%)	8 (22%)		
Промежуточная Intermediate	8 (5,4%)	74 (49,6%)	0,011	
Высокая High	24 (67%)	67 (45%)		
ICR после индукции ICR after induction	27 (75%)	132 (88,6%)	0,036	
Heудача индукции Failure of induction	6 (16%)	15 (10%)	0,26	
Медиана продолжительности ремиссии, мес. Median duration of remission, month	12 (1,6–63)	22 (0,5–70)	0,028	
Рецидив Relapse	9 (33%)	42 (30%)	0,7	
Жив Alive	23 (64%)	119 (80%)	0,04	
I CR	19 (53%)	100 (67%)		
II CR	4 (11%)	19 (13%)		
Смерть Death	13 (36%)	30 (20%)	0,04	
прогрессия progression	6 (16%)	19 (12,6%)		
инфекция infection	4 (11%)	9 (6%)	0,021	
до ремиссии before remission	3 (9%)	2 (1,4%)		

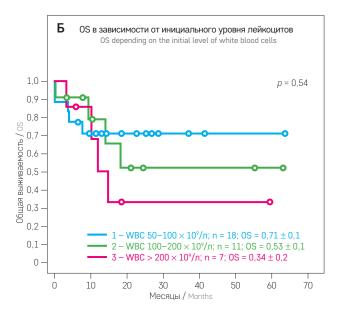
короче. В то же время статистический анализ инициальных характеристик и исходов терапии у пациентов с разными градациями ГЛ не обнаружил статистических различий между пациентами с ГЛ при WBC $50-100\times10^9/\pi$; $100-200\times10^9/\pi$ и более $200\times10^9/\pi$ (*таблица 3*). Анализ групп пациентов, разделенных по инициальному количеству лейкоцитов, представленный в *таблице 4*, не показал статистически значимых результатов.

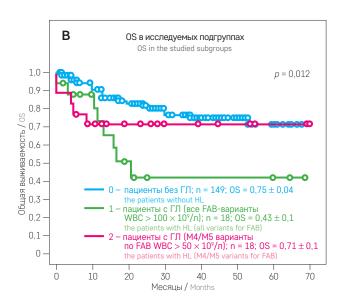
Таблица 4 Анализ групп пациентов по инициальному уровню лейкоцитов

Table 4
The analysis of the patients' groups according to the initial level of leukocytes

Анализируемая характеристика The analyzed characteristics	WBC 50-100 × 10³/л	WBC 100-200 × 10 ⁹ /л	WBC > 200 × 10°/л	p		
	-02	100	۸			
Кол-во пациентов Number of patients	18	11	7			
M4-M5 (FAB)	18	8	6	0,58		
Группа риска Risk group				0,53		
стандартная Standard	2	2	0			
промежуточная Intermediate	3	2	3			
высокая High	13	7	4			
Экстрамедуллярное поражение Extramedullary lesions	5	1	3	0,3		
Цитогенетика Cytogenetics						
MLL	10	3	2	0,5		
CBF	3	2	0			
ICR после индукции ICR after induction	13	10	4	0,28		
Рецидив Relapse	3	5	1	0,1		
Смерть до ремиссии Death before remission	2	1	0	0,6		
Смерть Death	5	4	4	0,1		

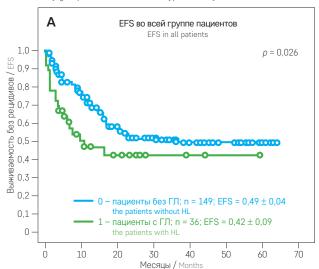

Анализ выживаемости в исследуемой группе представлен на *рисунках 4*–6. Различия в группах пациентов с ГЛ и без ГЛ статистически достоверны. Таким образом, инициальное наличие ГЛ ухудшает прогноз пациентов с ОМЛ.

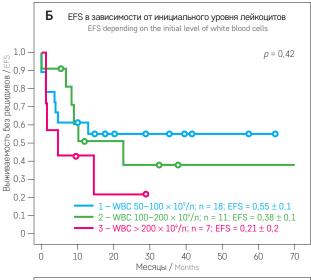

В нашем исследовании не получено различий в выживаемости в зависимости от инициального количества WBC — возможно, это связано с малочисленностью группы больных с ГЛ. Показано также, что в группе пациентов с M4/M5 и WBC $> 50 \times 10^9$ /л общая выживаемость выше, чем у пациентов с WBC $> 100 \times 10^9$ /л, при всех вариантах ОМЛ по FAB-классификации. Такие же данные получены при анализе бессобытийной выживаемости. Возможно, это


Рисунок 4

Общая выживаемость в исследуемых группах (с ГЛ и без ГЛ) Figure 4

OS in study groups (with and without hyperleukocytosis)




Рисунок 5

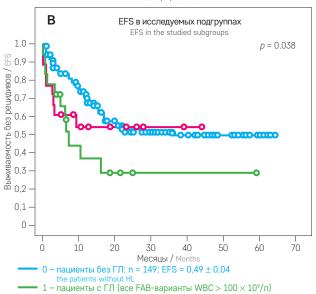

Выживаемость без рецидивов в исследуемых группах (с ГЛ и без ГЛ)

Figure 5

EFS in study groups (with and without hyperleukocytosis)

n = 18; EFS = 0,2 9 \pm 0,1 the patients with HL (all variants for FAB) пациенты с ГЛ (M4/M5 варианты по FAB Le > 50×10^{9} /л) n = 18; EFS = 0,54 \pm 0,1

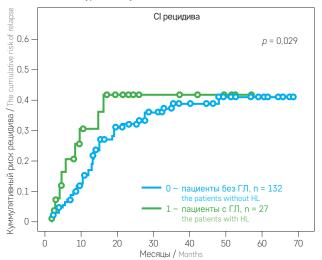

the patients with HL (M4/M5 variants for FAB)

Рисунок 6

Куммулятивный риск рецидива в исследуемых группах (с ГЛ и без ГЛ)

Figure 6

The cumulative risk of relapse in study groups (with and without hyperleukocytosis)

связано с тем, что циторедукция для пациентов М4/ М5 начинается раньше, а именно, при достижении числа WBC $50 \times 10^9 / л$. При анализе куммулятивного риска рецидива достоверных значений не выявлено.

ЗАКЛЮЧЕНИЕ

Гиперлейкоцитоз у пациентов с ОМЛ - неотложное состояние, чреватое тяжелейшими осложнениями в виде церебрального и легочного лейкостаза, требующее слаженной работы высококлассной мультидисциплинарной команды в составе гематологов/ онкологов, реаниматологов, владеющих афферентными технологиями, трансфузиологов, специалистов по визуализации, неврологов и офтальмологов. Чаще всего пациенты с ГЛ – это дети первых трех лет жизни с ОМЛ, характеризующимся реаранжировками гена MLL, хотя и цитогенетически благоприятные субварианты, в частности inv16, не редкость в данной группе. У детей с ОМЛ и ГЛ тяжесть состояния чаще всего обусловлена лейкостазом, а не синдромом лизиса опухоли, как у пациентов с ОЛЛ.

Зачастую поражения легких, головного мозга и органов брюшной полости имеют субклинический характер и становятся очевидны только после начала ПХТ. В связи с этим до начала циторедуктивной терапии необходимо выполнять МРТ головного мозга, КТ легких, брюшной полости, требуется также осмотр офтальмолога.

Мы настоятельно рекомендуем упреждающий перевод пациентов с ОМЛ и ГЛ, особенно раннего возраста, в отделение ОРИТ, где следует начинать специфическую химиотерапию, учитывая частую необходимость проведения искусственной вентиляции легких из-за лейкемического повреждения легких и высокого риска развития неврологических осложнений на фоне лейкостаза в сосудах головного мозга.

Оптимальный метод циторедукции при ГЛ не выработан; лейкаферез и заменные переливания крови быстро снижают количество циркулирующих бластных клеток, однако, по всей вероятности, не влияют на вероятность развития лейкостаза, поскольку его вызывают лейкемические клетки, адгезирующие к стенке микрососудов и проникающие в интерстиций легких и головного мозга. Нет объективных данных и в пользу какого-либо химиотерапевтического вмешательства (малые дозы цитарабина, гидроксимочевина, 6-меркаптопурин), анализ данных литературы не позволяет предпочесть тот или иной подход. Роль таких препаратов, как глюкокортикоиды в высоких дозах, еще менее изучена.

В течение 20 лет наша группа использует для циторедукции и профилактики синдрома лейкостаза круглосуточные инфузии низких доз даунорубицина и этопозида в сочетании с высокими дозами дексаметазона, результаты такого подхода не уступают данным, опубликованным в литературе [5–9]. В нашем исследовании развитие смертельного синдрома лейкостаза зарегистрировано у 4 (11%) из 36 пациентов.

Влияние инициального гиперлейкоцитоза на вероятность достижения ремиссии и конечные результаты лечения (вероятность рецидива, длительность ремиссии) также окончательно не определено. В нашем исследовании пациенты с M4- и M5-вариантами и ГЛ при WBC $50-100\times10^9$ /л имели общую и бессобытийную выживаемость, сопоставимую с группой с лейкоцитозом при WBC $<50\times10^9$ /л, а пациенты с лейкоцитозом при WBC $>100\times10^9$ /л – достоверно худшие показатели. В то же время малое число наблюдений и преобладание в данной группе пациентов с ОМЛ высокой цитогенетической группы

риска заставляет интерпретировать наши данные с осторожностью. Таким образом, инициальный ГЛ зарегистрирован у 19,5% неселектированных пациентов, последовательно включенных в протокол ОМЛ-ММ-2006 за 5-летний период. Смертность от осложнений ГЛ при применении низкодозной ХТ даунорубицином и этопозидом без цитарабина составила 2% всех пациентов, включенных в исследование. Влияние ГЛ на показатели бессобытийной и общей выживаемости проявлялось только при ГЛ с WBC > 100×10^9 /л. Возможно, стоит рассмотреть вопрос о начале циторедуктивной химиотерапии при содержании лейкоцитов более 50×10^9 /л для всех вариантов ОМЛ.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Не указан.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.

ORCID

Kalinina I.I. ORCID: http://orcid.org/0000-0002-0813-5626 Venyov D.A. ORCID: https://orcid.org/0000-0002-0183-1530 **Salimova T.Yu.** ORCID: http://orcid.org/0000-0002-2958-1705 Petrova U.N. ORCID: http://orcid.org/0000-0002-1258-8281 Goronkova O.V. ORCID: http://orcid.org/0000-0001-8571-5395 Baidildina D.D. ORCID: http://orcid.org/0000-0001-7130-8596 **Suntcova E.V.** ORCID: http://orcid.org/0000-0001-8404-1800 Evseev D.A. ORCID: http://orcid.org/0000-0001-8610-0624 Matveev V.E. ORCID: http://orcid.org/0000-0002-8709-5238 Khamin I.G. ORCID: https://orcid.org/0000-0001-8264-2258 **Dubrovina M.3.** ORCID: http://orcid.org/0000-0001-8228-4876 **Olshanskaya Yu.V.** ORCID: https://orcid.org/0000-0002-2352-7716 **Zerkalenkova E.A.** ORCID: https://orcid.org/0000-0001-9634-5828 Mandzhieva A.I. ORCID: http://orcid.org/0000-0003-4039-430X Balashov D.N. ORCID: https://orcid.org/0000-0003-2689-0569 **Shelihova L.N.** ORCID: http://orcid.org/0000-0003-0520-5630 Maschan M.A. ORCID: http://orcid.org/ 0000-0003-1735-0093 Novichkova G.A. ORCID: http://orcid.org/0000-0002-2322-5734 Maschan A.A. ORCID: http://orcid.org/ 0000-0002-0016-6698

Литература

- Campana D., Pui C.H. Childhood Leukemia. Abeloff's Clinical Oncology: Fifth Edition 2013.
- Greenwood M.J. Seftel M.D., Richardson C., Barbaric D., Barnett M.J., Bruyere H., et al. Leukocyte count as a predictor of death during remission induction in acute myeloid leukemia. Leuk Lymphoma 2006; 47 (7): 1245–52.
- Pastore F., Pastore A., Wittmann G., Hiddemann W., Spiekermann K. The role of therapeutic leukapheresis in hyperleukocytotic AML. PLoS One, 2014; 9 (4): e95062.
- Zeller B., Glosli H., Forestier E., Ha S.-Yin, Jahnukainen K., Jónsson Ó.G., et al. Hyperleucocytosis in paediatric acute

- myeloid leukaemia the challenge of white blood cell counts above 200×109/l. The NOPHO experience 1984–2014. Br J Haematol 2017; Aug; 178 (3): 448–56. DOI: 10.1111/bjh.14692. Epub 2017 May 25.
- Porcu P., Farag S., Marcucci G., Cataland S.R., Kennedy M.S., Bissell M. Leukocytoreduction for acute leukemia. Ther Apher 2002 Feb; 6 (1): 15–23.
- Robak T., Wrzesien-Kus A., Lech-Maranda, Kowal E.M., Dmoszynska A. Combination regimen of cladribine (2-Chlorodeoxyadenosine), cytarabine and G-CSF (CLAG) as induction therapy for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 2000; Sep; 39 (1-2): 121-9.
- Porcu P., Cripe L.D., Ng E.W., Bhatia S., Danielson C.M., Orazi A., McCarthy L.J. Hyperleukocytic leukemias and leukostasis: A review of pathophysiology, clinical presentation and management. Leukemia and Lymphoma 2000; 39 (1–2): 1–18.
- Ganzel C., Becker J., Mintz P.D., Lazarus H.M., Rowe J.M. Hyperleukocytosis, leukostasis and leukapheresis: Practice management. Blood Rev 2012; May; 26 (3): 117–22. doi: 10.1016/j. blre.2012.01.003. Epub 2012 Feb 23.
- Röllig C., Ehninger G. How I treat hyper-leukocytosis in acute myeloid leukemia.
 Blood 2015 May 21; 125 (21): 3246–52.
 doi: 10.1182/blood-2014-10-551507.
 Epub 2015 Mar 16.