Противоопухолевый эффект камптотецина в отношении клеток глиобластомы человека посредством подавления экспрессии **BRIP1**

И.Ф. Гареев^{1,2*}, О.А. Бейлерли^{1,3}, Хонгли Жанг^{4,5}, С.А. Румянцев^{2,6}

¹ Башкирский государственный медицинский университет, Россия. Республика Башкортостан, Уфа

² Российский национальный исследовательский медицинский университет имени Н.И. Пирогова, Россия, Москва

³ ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы», г. Москва, Россия

⁴ Первый госпиталь аффилированный Харбинского медицинского университета, Китай, Харбин

5 Институт нейронаук провинции Хэйлунцзян, Китай, Харбин

6 Национальный медицинский исследовательский центр эндокринологии, Россия, Москва

РИПИТОННА

Введение. Глиобластома - наиболее агрессивная и распространенная злокачественная опухоль головного мозга, отличающаяся гетерогенностью, способностью к инфильтрации и частыми рецидивами. BRCA1-взаимодействующий белок С-терминальной геликазы 1 (BRIP1) участвует в системе репарации ДНК и, согласно ряду исследований, может играть существенную роль в онкогенезе. Камптотецин, ингибитор топоизомеразы I, обладает цитотоксическим действием в отношении многих опухолевых клеток, однако его влияние на экспрессию BRIP1 при глиобластоме до настоящего времени изучено недостаточно.

Цель. Определить значение гена *BRIP1* в прогрессии глиобластомы и оценить противоопухолевый эффект камптотецина *in vitro*, связанный с ингибированием BRIP1.

Материалы и методы. Из базы данных GEO (сеты GSE54004 и GSE43378) были отобраны дифференциально экспрессируемые гены (DEGs) между первичными образцами тканей глиом низкой степени здокачественности (ГНСЗ) и первичными образцами тканей глиом высокой степени злокачественности (ГВСЗ). Проводился функциональный анализ Онтология генов (GO) и Киотской энциклопедии генов и генома (КЕGG), построение сети белок-белкового взаимодействия (PPI) и выявление ключевых генов с помощью плагина суtoHubba в Суtoscape. Анализ СМар использовался для идентификации соединений, способных подавлять сверхэкспрессированные при глиобластоме гены, в том числе BRIP1. Клеточные линии глиобластомы U251, U87 и LN229 и нормальные астроциты человека (НВА) были использованы в экспериментальном исследовании. Уровень экспрессии белка BRIP1 оценивали методом вестерн-блот анализа. Противоопухолевый эффект камптотецина изучали с помощью МТТ теста и проточной цитометрии.

Результаты. Среди 200 найденных DEGs, значимо сверхэкспрессированных в ГВС3, BRIP1 продемонстрировал высокие показатели степени взаимодействий в PPI-сети и был ассоциирован с путями репарации ДНК, гомологичной рекомбинацией и клеточным циклом (результаты GSEA). Поиск по базе СМар указал на камптотецин как одно из перспективных низкомолекулярных соединений для подавления BRIP1 (обогащение -0,949 и р = 0,00026). Уровень экспрессии белка BRIP1 был повышен в клеточных линиях U251, U87 и LN229 по сравнению с HBA, что подтверждает данные вестерн-блот анализа. Введение камптотецина в культуру U251 в

дозозависимой манере снижало жизнеспособность и пролиферацию

опухолевых клеток, ингибировало их миграцию, а также индуцировало

апоптоз. При этом наблюдалось дозозависимое снижение уровня экспрессии

белка BRIP1.

Заключение. Проведенное исследование указывает на ключевую роль

BRIP1 в развитии глиобластомы и демонстрирует, что камптотецин

способен ингибировать развитие и прогрессирование глиобластомы

полностью или частично за счёт подавления активности BRIP1. Полученные

тозволяют BRIP1 как данные рассматривать потенциальную

терапевтическую мишень и подтверждают целесообразность дальнейшей

аналогов для таргетной терапии разработки камптотецина и его

глиобластомы.

Ключевые слова: глиобластома; BRIP1; камптотецин; репарация ДНК;

апоптоз; биоинформатический анализ; онкогенез; таргетная терапия

Для корреспонденции: Гареев Ильгиз Фанилевич — к.м.н., старший научный

сотрудник Центральной научно-исследовательской лабораториии ФГБОУ ВО БГМУ

Минздрава России; 450008, Республика Башкортостан, г. Уфа, ул. Ленина, д. 3; 0000-

0002-4965-0835; e-mail: ilgiz gareev@mail.ru

КАК ЦИТИРОВАТЬ: Гареев И.Ф., Бейлерли О.А., Жанг Хонгли, Румянцев С.А.

Противоопухолевый эффект камптотецина в отношении клеток глиобластомы человека

посредством подавления экспрессии BRIP1. // Вопросы гематологии/онкологии и

иммунопатологии в педиатрии. – 2025. – Т. 24. – № 3. – С. XX–XX. DOI:

https://doi.org/10.24287/j.991

Получена: 02.07.2025

Принята к печати: 16.09.2025

Antitumor effect of camptothecin against human glioblastoma cells via suppression of *BRIP1* expression

Ilgiz F. Gareev^{1,2*}, Ozal A. Beylerli^{1,3}, Hongli Zhang^{4,5}, Sergey A. Roumiantsev^{2,6}

¹Central Research Laboratory, Bashkir State Medical University, Ufa, Russian Federation

²Pirogov Russian National Research Medical University, Moscow, Russian Federation

³Peoples' Friendship University of Russia, 117198 Moscow, Russia

⁴First Affiliated Hospital of Harbin Medical University, Harbin, China

⁵Heilongjiang Province Neuroscience Institute, Harbin, China

⁶National Medical Endocrinology Research Centre, Moscow, Russian Federation

ABSTRACT

Introduction. Glioblastoma is the most aggressive and common malignant brain tumor characterized by high heterogeneity, infiltration capacity and frequent relapses. BRIP1 is involved in the DNA repair system and, according to a number of studies, may play a significant role in oncogenesis. Camptothecin, a topoisomerase I inhibitor, has a cytotoxic effect on many tumor cells, but its effect on BRIP1 expression in glioblastoma has not been adequately studied to date. To determine the role of the BRIP1 gene in glioblastoma progression and to evaluate the antitumor effect of camptothecin in vitro associated with BRIP1 inhibition.

Materials and Methods. Differentially expressed genes (DEGs) between primary low-grade glioma (LGG) and primary high-grade glioma (HGG) tissue samples were identified from the GEO database (GSE54004 and GSE43378 sets). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG)

functional analysis, protein-protein interaction (PPI) network construction, and key gene identification were performed using cytoHubba plugin in Cytoscape. CMap analysis was used to identify compounds capable of suppressing glioblastoma-overexpressed genes, including BRIP1. U251, U87, and LN229 glioblastoma cell lines and human brain astrocytes (HBA) were used in the experimental study. BRIP1 protein expression level was assessed by Western blot analysis. The antitumor effect of camptothecin was studied using MTT assay and flow cytometry.

Results. Among the 200 DEGs found to be significantly overexpressed in HBA, BRIP1 showed high interaction scores in the PPI network and was associated with DNA repair pathways, homologous recombination, and cell cycle (GSEA results). CMap search indicated camptothecin as one of the promising small molecule compounds for BRIP1 suppression (enrichment -0.949 and p = 0.00026). The expression level of BRIP1 protein was increased in U251, U87, and LN229 cell lines compared with HBA, which confirmed the data of Western blot analysis. Introduction of camptothecin into the U251 culture in a dose-dependent manner reduced the viability and proliferation of tumor cells, inhibited their migration, and induced apoptosis. At the same time, a dose-dependent decrease in the level of BRIP1 protein expression was observed. Conclusion. The study indicates a key role of BRIP1 in the development of glioblastoma and demonstrates that camptothecin is able to inhibit the development and progression of glioblastoma completely or partially by suppressing BRIP1 activity. The data obtained allows us to consider BRIP1 as a potential therapeutic target and confirm the feasibility of further development of camptothecin and its analogs for targeted therapy of glioblastoma.

KEYWORDS: glioblastoma; BRIP1; camptothecin; DNA repair; apoptosis; bioinformatics analysis; oncogenesis; targeted therapy

FOR CORRESPONDENCE: Ilgiz F. Gareev, Cand. Sci. (Medicine), Senior Researcher of the Central Research Laboratory, Bashkir State Medical University, Ufa; 450008, Republic of

Bashkortostan, Ufa, Lenin St., 3; 0000-0002-4965-0835; e-mail: <u>ilgiz_gareev@mail.ru</u> e-mail: ilgiz_gareev@mail.ru

How to cite: Gareev IF, Beylerli OA, Zhang Hongli, Roumiantsev SA. Antitumor effect of camptothecin against human glioblastoma cells via suppression of BRIP1 expression. Pediatric Hematology/Oncology Immunopathology. 2025;24(3):XX-XX. and DOI: https://doi.org/10.24287/j.991

Received: 02.07.2025

ВВЕДЕНИЕ

Глиобластома является наиболее распространенной и смертельной злокачественной первичной опухолью головного мозга. Традиционные подходы в лечении включают хирургическую резекцию, лучевую- и химиотерапию, часто с темозоломидом (ТМZ) [1]. Эти методы лечения, хотя и являются стандартными, сталкиваются со значительными трудностями, особенно из-за способности опухоли широко проникать в окружающие ткани мозга и наличия гематоэнцефалического барьера (ГЭБ), который ограничивает эффективность многих системных методов лечения. Кроме того, гетерогенность и высокая частота рецидивов глиобластомы создают дополнительные препятствия для лечения [2, 3]. Достижения в области иммунотерапии, молекулярной биологии и технологий позволяют искать новые методы лечения глиобластомы. Среди них внимание привлекают таргетная терапия и подходы персонализированной медицины.

BRCA1-взаимодействующий белок С-терминальной геликазы 1 (BRIP1) это белок из 1249 аминокислот с функцией геликазы, который участвует в гомеостазе ДНК. Ген BRIP1 морфологически экспрессируется как в злокачественных, так и в здоровых клетках. BRIP1 взаимодействует с многочисленными белками, связанными с регуляцией ответов повреждение ДНК и сигнализацией контрольных точек, которые жизненно важны для сохранения постоянства хромосом и генома. BRIP1 кодирует белок, принадлежащий к семейству RecQ DEAH-хеликаз 21, который помогает восстанавливать поврежденную ДНК, взаимодействуя с BRCA1 [4-6]. Однако, его роль при глиомах не была изучена. Камптотецин, ингибитор ДНК-топоизомеразы I, который вызывает повреждение ДНК в опухолевых клетках, широко используется для лечения различных видов опухолей, включая глиомы [7, 8]. Однако механизмы воздействия камптотецина на экспрессию BRIP1 при глиобластоме остаются недостаточно изученными. Для достижения цели исследования мы провели биоинформатический

анализ дифференциально экспрессируемых генов (DEGs), основанная на

базе данных Омнибуса Экспрессии Генов (GEO), в первичных образцах тканей ГЛИОМ различной степени злокачественности. Были идентифицированы **DEGs** белок-белковых И построена сеть взаимодействиях (РРІ), что позволило идентифицировать ключевые гены, в были числе BRIP1. Также оценены соответствующие TOM низкомолекулярные соединения на базе СМар. На основании результатов биоинформатического анализа было инициировано in vitro-исследование. Результаты настоящего исследования могут предоставить новые сведения об онкогенезе глиом и тем самым расширить перспективы лечения этого типа опухолей.

МАТЕРИАЛЫ И МЕТОДЫ БИОИНФОРМАТИЧЕСКИЙ АНАЛИЗ Сбор данных

Серии данных, относящиеся к мРНК генов или DEGs, связанных с глиомами, были получены из базы данных GEO (https://www.ncbi.nlm.nih.gov/geo/). Для анализа были отобраны две серии данных, включая GSE54004 и GSE43378. GSE54004 состоял из 13 первичных тканей глиом низкой степени злокачественности (ГНС3, BO3 Grade 1–2) и 131 первичных образцов тканей глиом высокой степени злокачественности (ГВСЗ, ВОЗ Grade 3-4) и, тогда как GSE43378 включал 5 первичных образцов тканей ГНСЗ и 45 первичных образцов тканей ГВСЗ. Для идентификации DEGs между ГНСЗ и ГВСЗ применялись пороговое значение кратности изменения (FC) более 2 $(|\log 2FC| \ge 1)$ и значимость пороговых значений рассматривалась при значении p < 0.05 и показателе ложного обнаружения (FDR) < 0.05. Тепловая карта и график Volcano были созданы с использованием инструмента ACBI Bioinformation (https://www.aclbi.com/static/index.html#/geo) соответственно. Кроме того, мы также загрузили данные секвенирования мРНК (700 образцов ГНСЗ и 701 образец ГВСЗ) и данные микрочипов (268 образцов ГНСЗ и 268 образцов ГВСЗ) с измененной экспрессией BRIP1 из базы данных «Китайский атлас генома глиомы» (англ. Chinese Glioma Genome Atlas, CGGA) (http://www.cgga.org.cn/)» и TCGA (https://portal.gdc.cancer.gov/) соответственно.

Построение сети белок-белкового взаимодействия

Чтобы получить более глубокое представление о белок-белковых взаимодействиях (РРІ) DEGs, был проведен анализ сети РРІ с использованием базы данных STRING (http://string-db.org). Взаимодействия с объединенным баллом более 0,7 считались значимыми. Программное обеспечение Cytoscape (версия 3.10.3) и онлайн-инструмент поиск для извлечения взаимодействующих генов (англ. Search Tool for the Retrieval of Interacting Genes, SRTING; http://string.embl.de/) с пороговым значением оценки взаимодействия 0,4 были использованы для визуализации сети РРІ этих значимых взаимодействий. Кроме того, плагин MCODE в Cytoscape использовался для идентификации ключевых модулей кластеризации в сети РРІ. Критерии отбора для наиболее значимых модулей были следующими: баллы MCODE больше 10, пороговое значение степени 2, пороговое значение оценки узла 0,2, максимальная глубина 100 и k-балл 2.

Анализ обогащения сигнальных nymeй DEGs

Онтология генов (GO) использовалась для анализа функционального обогащения в биологических процессах, клеточных компонентах и уровнях молекулярных функций. В связи с классификацией генов в связанных путях анализ сигнальных путей DEGs проводился на основе базы данных Киотской энциклопелии (KEGG, генов И генома https://www.genome.jp/kegg/) и онлайн-базы данных ДЛЯ аннотаций, визуализации обнаружения (DAVID, комплексного И https://david.ncifcrf.gov/). В этой части были отобраны пути со значением р < 0.05.

Анализ обогащения по функциональной принадлежности (GSEA) применился для того, чтобы помочь глубже понять функцию ключевых генов и регуляторные связи в геноме. С помощью пути GSEA исследователи

могут обнаружить, какие гены совместно регулируются в определенных биологических процессах, раскрывая функцию и механизм действия этих генов в организмах. Они имеют большое значение для изучения биологических процессов, механизмов заболеваний и разработки схем лечения лекарственными средствами.

Получение противоопухолевых низкомолекулярных соединений с помощью анализа СМар

СМар — это база данных разработки терапевтических агентов на основе экспрессии генов, которая объясняет связь между генами, терапевтическими агентами и заболеваниями путем интеграции эффектов тысяч низкомолекулярных лекарств на различные клетки человека. В этом исследовании мы преобразовали DEG в зонды и затем загрузили их на официальный сайт базы данных СМар для получения соответствующих низкомолекулярных соединений. Отрицательно связанные терапевтические средства (р < 0,01 и обогащение < 0) считались потенциально терапевтически эффективными для лечения глиом.

Культивирование клеток

Линия клеток глиомы человека U251, U87 и LN229, и клеточная линиия астроцитов головного мозга человека (HBA) культивировалась в модифицированной Дульбекко среде Игла (англ. Dulbecco's Modified Eagle Medium, DMEM), содержащей 100 ЕД/мл пенициллина и 100 мкг/мл стрептомицина, дополненной 10% фетальной бычьей сывороткой (FBS), и инкубировалась при 37°C с 5% CO2 в увлажненной атмосфере. Среду меняли каждые 1–2 дня. Когда клетки покрывали 90% культуральной колбы, их расщепляли трипсином и пассировали.

Вестерн-блот анализ

Образцы клеток лизировали в буфере для радиоиммунопреципитационного анализа (RIPA) с добавлением 0,1 ммоль/л коктейля ингибиторов протеазы, ортованадата натрия и фенилметилсульфонилфторида (PMSF). Лизат инкубировали на льду в течение 30 мин и встряхивали каждые 10 мин, затем

центрифугировали при 17 000 g в течение 15 мин для сбора белков. Конечную концентрацию белка в супернатанте определяли с помощью реагента для анализа белка Брэдфорда. Равные количества белка (~40 мкг) кипятили в течение 5 мин в равном объеме восстанавливающего буфера, разделяли на 8% полиакриламидных гелях и электроблотировали на нитроцеллюлозных мембранах. Мембраны были исследованы с помощью первичных антител anti-BRIP1 (разведение 1:500, Abcam: abID#151509) и anti-ACTIN (разведение 1:200), а затем вторичных антител goat anti-rabbit IgG-HRP (разведение 1:10 000). Иммунореактивность была обнаружена с Для получения относительной помошью хемилюминесценции. количественной оценки экспрессии BRIP1 на уровне белка изображения, полученные с помощью вестерн-блоттинга, были проанализированы с помощью программного обеспечения ImageJ. Интенсивность полос BRIP1 относительно полос ACTINA была использована для расчета относительной экспрессии этого гена в каждой клеточной линии глиом.

Анализ жизнеспособности опухолевых клеток

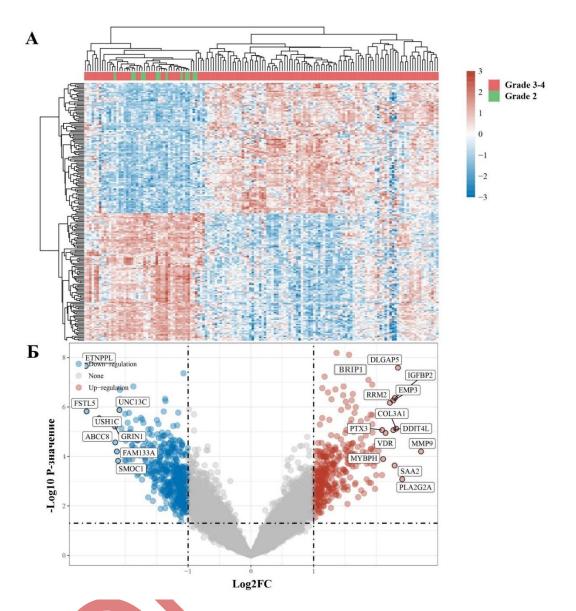
Цитотоксичность синтезированного камптотецина оценивали в отношении клеточной линии глиом U251 с помощью анализа с 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромидом (МТТ). Клеточную линию глиом U251 обрабатывали различными дозами/концентрациями камптотецина (0, 50, 100, 200 и 400 мкм) в течение 24 и 48 часов. Затем в каждую лунку добавляли 100 мкл МТТ (3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолий бромид) в дозе 5 мг/мл (Roche Diagnostics, Шанхай, Китай) и дополнительно инкубировали в течение 2 ч при 37 ∘С. Супернатант удаляли, и в лунки добавляли 200 мкл 0,1% диметилсульфоксида (DMSO) для растворения фиолетовых кристаллов формазана. Количественную оценку проводили путем измерения поглощения при 540 нм с помощью просвечивающей электронной микроскопией. Результаты представлены как средние значения из трех независимых экспериментов, проведенных в трех повторах.

Анализ гибели опухолевых клеток с помощью аннексина V-FITC/PI

Клеточную линию глиом U251 высевали с плотностью 3×10^5 клеток/лунку в 6-луночные планшеты, инкубировали в течение ночи, а обрабатывали двумя различными дозами/концентрациями (50 мкМ и 100 мкМ) камптотецина и 200 мкл 0,1% DMSO, где клеточная линия U251 контрольной группой. Через 48 обработки трипсинизировали, промывали один раз PBS, а затем суспендировали в 1 × связывающем буфере. Затем к каждому образцу добавляли аннексин Vфлуоресцеин-5-изотиоцианат (FITC) (5 мкл) и пропидий йодид (PI) (5 мкл) (KeyGen Biotech, Китай), после чего инкубировали в течение 15 мин при комнатной температуре в темноте. Клетки анализировали с помощью проточной цитометрии (BD Biosciences, Сан-Хосе, Калифорния, США) и скорость апоптоза клеток анализировали с помощью пакета програмного обеспечения FLOWJO для анализа данных проточной цитометрии (v10; BD Biosciences).

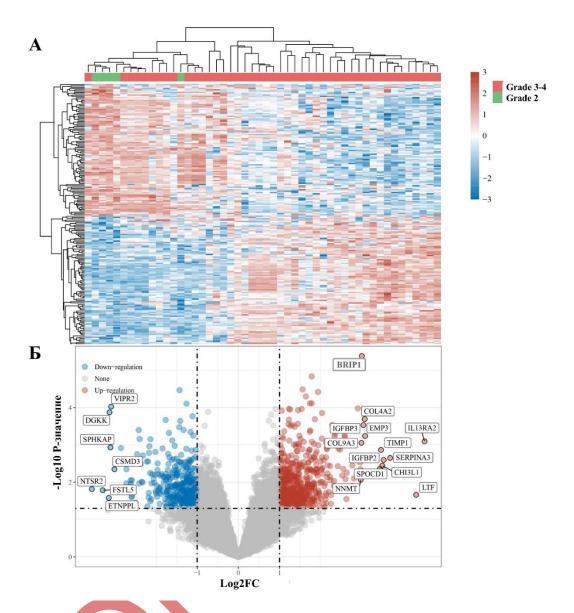
Анализ «зарастания раны» опухолевыми клетками

Был проведен анализ «зарастания раны» для оценки способности клеточной линии глиом U251 к миграции и инвазии. Вкратце, клетки высевали в шестилуночные планшеты с плотностью 1,0 × 105/лунку до достижения ими 80% слияния. «Раны» создавались в монослое конфлюэнтных клеток U251 с помощью кончика пипетки. Ширина «ран» оценивалась как одинаковая в начале экспериментов. Лунки промывали PBS три раза для удаления плавающих клеток и детрита. Чтобы проверить влияние камптотецина на миграцию и инвазию опухолевых клеток глиом, клеточная линия U251 высевалась в бессывороточную среду DMEM с камптотецином или без него (0 мкм, 50 мкм и 100 мкм). Затем эти клетки инкубировали в течение 0–48 ч. Культуральные планшеты инкубировали при 37 °С и в 5% СО2. «Зарастание раны» измеряли и регистрировали фотографически с течением времени с использованием фазово-контрастной микроскопии в 0, 12, 24, 36, 48 и 60 часов.


Статистический анализ

Результаты представлены как среднее значение \pm стандартное отклонение. Для статистического анализа использовалось программное обеспечение SPSS (версия 13.0; SPSS, Inc., Чикаго, Иллинойс, США) и программа GraphPad Prism (версия 8.0). Для сравнения различий между группами использовался непарный t-тест. Р<0,05 считалось показателем статистически значимого различия.

РЕЗУЛЬТАТЫ


Идентификация DEGs на основе базы данных GEO

В наборе данных GSE54004 было идентифицировано в общей сложности 798 DEGs (340 генов с повышенной экспрессией и 458 генов с пониженной экспрессией), а в наборе данных GSE43378 — 865 DEGs (507 генов с повышенной экспрессией и 358 генов с пониженной экспрессией). Результаты показали, что в общей сложности 1663 ген был идентифицирован как дифференциально экспрессируемый. Затем мы сузили наш поиск и выбрали по 100 генов из каждой базы данных с наиболее высоким уровнем экспрессии с для дальнейшего анализа, которые в итоге были идентифицированы как гены, связанные с глиобластомой (Рисунок 1А-Б и Рисунок 2А-Б).

Рисунок 1. (A) Тепловая карта и (Б) график Volcano, показывающая профиль экспрессии 798 дифференциально экспрессируемых генов (DEGs), основанная на базе GSE54004. Цвета отображают высокий (красный) и низкий (зеленый) уровень экспрессии генов.

Figure 1. (A) Heatmap and (B) Volcano plot showing the expression profile of 798 differentially expressed genes (DEGs) based on the GSE54004 database. Colors represent high (red) and low (green) gene expression.

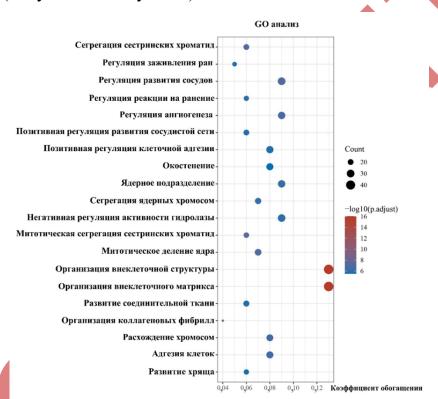
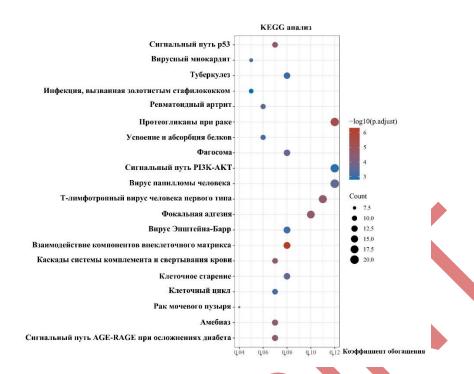

Рисунок 2. (A) Тепловая карта и (Б) график Volcano, показывающая профиль экспрессии 865 дифференциально экспрессируемых генов (DEGs), основанная на базе GSE43378. Цвета отображают высокий (красный) и низкий (зеленый) уровень экспрессии генов.

Figure 2. (A) Heatmap and (B) Volcano plot showing the expression profile of 865 differentially expressed genes (DEGs) based on the GSE43378 database. Colors represent high (red) and low (green) gene expression.

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И АНАЛИЗ ОБОГАЩЕНИЯ ПУТЕЙ DEGS


Для анализа GO и KEGG использовались общие 200 DEGs с высоким уровнем экспрессии соответственно. Анализ GO и KEGG показал, что DEGs

с повышенной экспрессией в основном участвовали в регуляции таких процессов как «регуляция развитие сосудов», «регуляция ангиогенеза», «ядерное подразделение», «негативная регуляция активности гидролазы», «организация внеклеточной структуры», «организация внеклеточного матрикса», «протеогликаны при раке» и «сигнальный путь PI3K-AKT», «вирус папилломы человека», «Т-лимфотропный вирус человека первого типа», «фокальная адгезия» и «взаимодействие компонентов внеклеточного матрикса» (Рисунок 3 и Рисунок 4).

Рисунок 3. Анализ биологических процессов, куда вовлечены гены с повышенной экспрессией из дифференциально экспрессируемых генов (DEGs) с помощью Генной Онтологией (GO).

Figure 3. Analysis of biological processes involving upregulated genes from differentially expressed genes (DEGs) using Gene Ontology (GO).

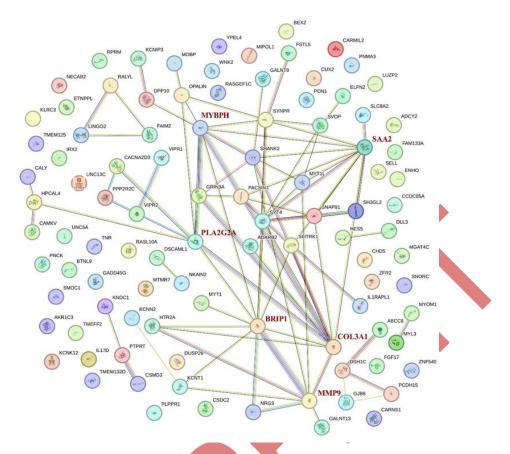
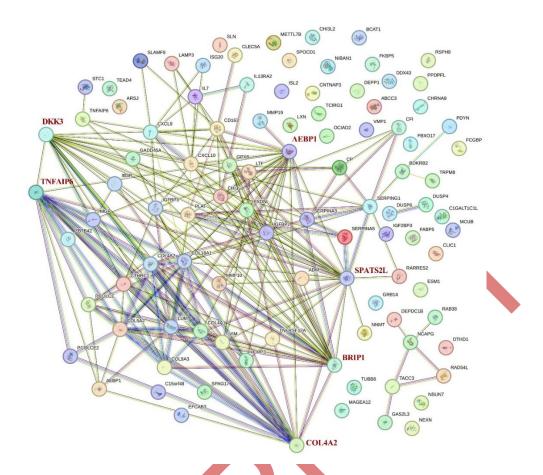


Рисунок 4. Анализ сигнальных путей, куда вовлечены гены с повышенной экспрессией из дифференциально экспрессируемых генов (DEGs) с помощью Киотской энциклопедией генов и геномов (KEGG).

Figure 4. An analysis of signaling pathways involving upregulated genes from differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes (KEGG).


Идентификация ключевых генов из DEGs

Сеть РРІ для 100 генов с наиболее высокой экспрессией из каждого набора данных была построена с использованием базы данных STRING (версия 12.0), которая включает: из банных данных GSE54004 - 100 узлов и 86 ребер со средней степенью узла 4,42 и значением P < 1,0e-16 и из GSE43378 - 100 узлов и 219 ребер со средней степенью узла 4,38 и значением P < 1,0e-16 (Рисунок 5 и Рисунок 6; Таблица 1 и Таблица 2).

Рисунок 5. Сеть белок-белкового взаимодействия (РРІ) для генов с повышенной экспрессией из общих дифференциально экспрессируемых генов (DEGs) из базы данных GSE54004.

Figure 5. Protein—protein interaction (PPI) network for upregulated genes from common differentially expressed genes (DEGs) from the GSE54004 database.

Рисунок 6. Сеть белок-белкового взаимодействия (РРІ) для генов с повышенной экспрессией из общих дифференциально экспрессируемых генов (DEGs) из базы данных GSE43378

Figure 6. Protein—protein interaction (PPI) network for upregulated genes from common differentially expressed genes (DEGs) from the GSE43378 database.

Таблица 1. Степень узла генов в сети белок-белковые взаимодействия (PPI), основанная на базе данных GSE54004

Table 1. Node degree of genes in protein-protein interaction (PPI) networks based on the GSE54004 database

Ген	Идентификационный номер	Степень
COL3A1	9606. ENSP00000304408	12
BRIP1	9606. ENSP00000259008	11
SAA2	9606. ENSP00000436126	11
MYBPH	9606. ENSP00000255416	9
PLA2G2A	9606. ENSP00000383364	8
MMP9	9606. ENSP00000361405	8

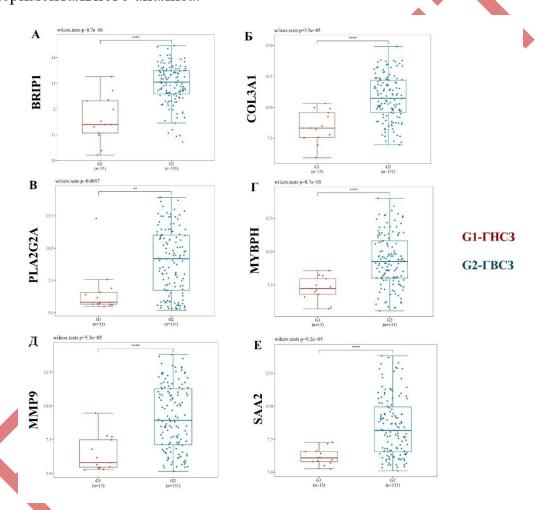
SYT4	9606.ENSP00000255224	8
SHANK2	9606.ENSP00000345193	7
SYNPR	9606.ENSP00000418994	7
GRIN3A	9606.ENSP00000355155	5
MYT1L	9606.ENSP00000497479	5
SLITRK1	9606.ENSP00000366288	5
SNAP91	9606.ENSP00000400459	5
OPALIN	9606.ENSP00000360214	4
PACSIN1	9606.ENSP00000484060	4
SVOP	9606.ENSP00000479104	4
HPCAL4	9606.ENSP00000481834	3
HTR2A	9606.ENSP00000437737	3
KCNT1	9606.ENSP00000360822	3
SH3GL2	9606.ENSP00000369981	3
OPALIN PACSINI SVOP HPCAL4 HTR2A KCNT1	9606.ENSP00000360214 9606.ENSP00000484060 9606.ENSP00000479104 9606.ENSP00000481834 9606.ENSP00000437737 9606.ENSP00000360822	4 4 3 3 3 3 3 3 3

Таблица 2. Степень узла генов в сети белок-белковые взаимодействия (PPI), основанная на базе данных GSE43378

Table 2. Node degree of genes in protein-protein interaction (PPI) networks based on GSE43378 database

Ген	Идентификационный номер	Степень
BRIP1	9606. ENSP00000259008	27
SPATS2L	9606. ENSP00000482515	23
AEBP1	9606. ENSP00000223357	23
COL4A2	9606. ENSP00000353654	21
DKK3	9606. ENSP00000433112	21
TNFAIP6	9606. ENSP00000243347	17
COLI8A1	9606.ENSP00000352798	16
LUM	9606.ENSP00000266718	16
CXCL10	9606.ENSP00000305651	15
COL5A2	9606.ENSP00000364000	14
COL4A1	9606.ENSP00000364979	13
IGFBP3	9606.ENSP00000370473	13
PXDNL	9606.ENSP00000348645	12
CD163	9606.ENSP00000352071	11
COL4A3	9606.ENSP00000353654	11
VIM	9606.ENSP00000446007	11
CHI3L1	9606.ENSP00000255409	10

CXCL9	9606.ENSP00000354901	9
PCOLCE	9606.ENSP00000223061	9
SERPING1	9606.ENSP00000278407	9


Затем программное обеспечение Cytoscape и плагин cytoHubba были использованы для поиска ключевых генов в сети PPI DEGs. В общей сложности по 6 лучших генов, ранжированных по степени, были идентифицированы как ключевые гены из двух баз данных. В результате было выявлено 11 ключевых/топ генов с повышенной экспрессией: из набора данных GSE54004 - BRIP1, коллаген тип III, альфа 1 (англ. collagen type III alpha 1 chain, COL3A1), мембрано-ассоциированная фосфолипаза A2 A2, membrane associated, PLA2G2A), (англ. phospholipase миозинсвязывающий белок H (англ. myosin binding protein H, MYBPH), MMP9 и белок сывороточного амилоида A (англ. serum amyloid A protein, SAA2); из набора данных GSE43378 - белок 1, связывающий A (англ. AE binding protein 1, EAEBP1), BRIP1, коллаген, тип IV, альфа 2 (англ. collagen, type IV, alpha 2, COL4A2), белок 3, связанный с Dickkopf (англ. Dickkopfrelated protein 3, DKK3), белок гена 6, индуцируемый фактором некроза опухоли альфа (англ. tumor necrosis factor alpha induced protein 6, TNFAIP6) сперматогенез ассоциированный серин подобный rich 2 (англ. spermatogenesis associated serine rich 2 like, SPATS2L).

На основе анализа сигнальных путей KEGG было определено, что наши предложенные ключевые гены могут быть тесно связаны с онкогенезом глиобластомы, а именно с протеогликанами и сигнальным путем PI3K-AKT.

Анализ экспрессии ключевых генов

С помощью базы данных Assistant for clinical bioinformatics (www.aclbi.com) снова были проверены различия в транскрипционной экспрессии 11 ключевых генов между ГНСЗ и ГВСЗ. На основе базы данных Assistant for clinical bioinformatics было определено, что наши предложенные ключевые гены могут быть тесно связаны с онкогенезом ГВСЗ. Значимость двух групп выборки определялся помощью теста Вилкоксона или Т-теста. ВRIP1 был

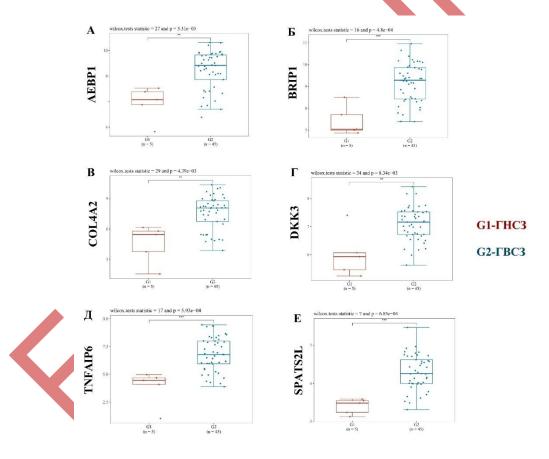
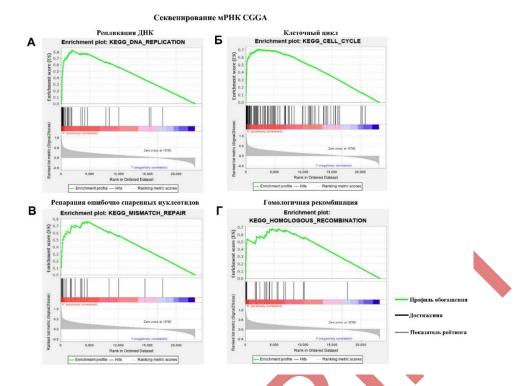

наиболее сверхэспрессирован в двух наборов данных GSE54004 и GSE43378, имел степень PPI 27 и 11, и неоднократно была доказана его роль в восстановлении ДНК при других опухолях (Рисунок 7 и Рисунок 8). С учетом нашей цели в изучении развития и прогрессирования глиобластомы, а именно поиска генов, участвующих в путях восстановления ДНК в опухолевых клетках, и потенциального использования найденных генов в качестве терапевтических мишеней, то BRIP1 был выбран для дальнейшего экспериментального анализа.

Рисунок 7. Уровень экспрессии шести ключевых генов в сравнении между образцами глиом низкой степени злокачественности (ГНС3, Grade 2) и глиом высокой степени злокачественности (ГВС3, Grade 3–4). Результаты основаны на данных сета GSE54004, где красный цвет представляет образцы ГНС3, а синий — образцы ГВС3. График ясно показывает, что BRIP1, COL3A1, PLA2G2A, MYBPH, MMP9 и SAA2 демонстрируют значительную

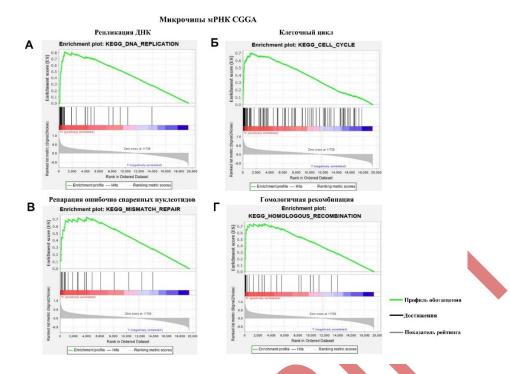
повышенную экспрессию (сверхэкспрессию) в ГВСЗ, чем в образцах ГНСЗ. Различия между группами анализировались с помощью теста Вилкоксона, p<0,05.

Figure 7. The expression level of six key genes compared between low-grade glioma (LGG, Grade 2) and high-grade glioma (HGG, Grade 3–4) samples. The results are based on the GSE54004 dataset, where red represents LGG samples and blue color represents HGG samples. The graph clearly shows that BRIP1, COL3A1, PLA2G2A, MYBPH, MMP9, and SAA2 show significantly higher expression (overexpression) in HGG than in LGG samples. The differences between groups were analyzed using the Wilcoxon test, p<0.05.


Рисунок 8. Уровень экспрессии шести ключевых генов в сравнении между образцами глиом низкой степени злокачественности (ГНС3, Grade 2) и глиом высокой степени злокачественности (ГВС3, Grade 3–4). Результаты основаны на данных сета GSE43378, где красный цвет представляет образцы ГНС3, а синий — образцы ГВС3. График ясно показывает, что AEBP1,

BRIP1, COL4A2, DKK3, TNFAIP6 и SPATS2L демонстрируют значительную повышенную экспрессию (сверхэкспрессию) в ГВС3, чем в образцах ГНС3. Различия между группами анализировались с помощью теста Вилкоксона, p<0,05 (*).

Figure 8. The expression level of six key genes compared between low-grade glioma (LGG, Grade 2) and high-grade glioma (HGG, Grade 3–4) samples. The results are based on the GSE43378 dataset, where red represents LGG samples and blue represents HGG samples. The graph clearly shows that AEBP1, BRIP1, COL4A2, DKK3, TNFAIP6 and SPATS2L show significantly higher expression (overexpression) in HGG than in LGG samples. The differences between groups were analyzed using the Wilcoxon test, p<0.05 (*).


Результаты GSEA

Результаты GSEA анализа использовали для дальнейшей проверки результатов KEGG для BRIP1. Кроме того, для полного понимания задействованных сигнальных путей, регулируемых BRIP1, в онкогенезе глиобластомы был проведен анализ GSEA на основе данных секвенирования мРНК CGGA, данных микрочипов CGGA и данных секвенирования мРНК ТСGA (Рисунок 9, Рисунок 10 и Рисунок 11). Репликация ДНК, гомологичная рекомбинация, репарация ошибочно спаренных нуклеотидов и нарушение клеточного цикла были идентифицированы как потенциальные сигнальные компоненты, задействованные в онкогенезе глиом, посредством регуляции BRIP1.

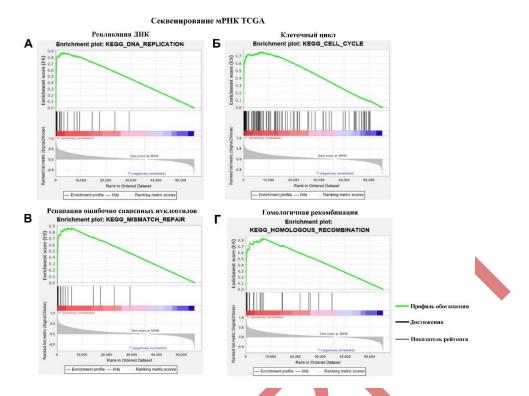

Рисунок 9. Графики обогащения на основе анализа обогащения по функциональной принадлежности (GSEA) и данных секвенирования мРНК СGGA. (А) График обогащения пути репликации ДНК, (Б) график обогащения клеточного цикла, (В) график обогащения репарации ошибочно спаренных нуклеотидов и (Г) График обогащения гомологичной рекомбинации. ЕS: Оценка обогащения.

Figure 9. Enrichment plots are based on generalized enrichment analysis (GSEA) and CGGA mRNA sequencing data. (A) DNA replication pathway enrichment plot, (B) cell cycle enrichment plot, (C) mismatch repair enrichment plot, and (D) homologous recombination enrichment plot. ES: Enrichment score.

Рисунок 10. Графики обогащения на основе анализа обогащения по функциональной принадлежности (GSEA) и данных микрочипов мРНК СGGA. (А) График обогащения пути репликации ДНК, (Б) график обогащения клеточного цикла, (В) график обогащения репарации ошибочно спаренных нуклеотидов и (Г) График обогащения гомологичной рекомбинации. ЕS: Оценка обогащения.

Figure 10. Enrichment plots are based on generalized enrichment analysis (GSEA) and CGGA mRNA microarray data. (A) DNA replication pathway enrichment plot, (B) cell cycle enrichment plot, (C) mismatch repair enrichment plot, and (D) homologous recombination enrichment plot. ES: Enrichment score.

Рисунок 11. Графики обогащения на основе анализа обогащения по функциональной принадлежности (GSEA) и данных секвенирования мРНК ТСGA. (А) График обогащения пути репликации ДНК, (Б) график обогащения клеточного цикла, (В) график обогащения репарации ошибочно спаренных нуклеотидов и (Г) график обогащения гомологичной рекомбинации. ЕS: Оценка обогащения.

Figure 11. Enrichment plots based on generalized enrichment analysis (GSEA) and TCGA mRNA sequencing data. (A) DNA replication pathway enrichment plot, (B) cell cycle enrichment plot, (C) mismatch repair enrichment plot, and (D) homologous recombination enrichment plot. ES: Enrichment score.

Результаты поиска противоопухолевых низкомолекулярных соединений на базе СМар

Мы выбрали 10 ключевых генов из двух баз данных GSE54004 и GSE43378, помимо BRIP1, со сврехэкспрессией COL3A1, PLA2G2A, MYBPH, MMP9, SAA2, EAEBP1, COL4A2, DKK3, TNFAIP6 и SPATS2L. Затем мы загрузили эти гены в СМар и спрогнозировали низкомолекулярные соединения, связанные с подавлением экспрессии BRIP1 при глиоме. Одним из

важнейших оказался камптотецин (обогащение -0,949 и p = 0,00026). 2D- и 3D-химические структуры камптотецин были получены из PubChem (Рисунок 12).

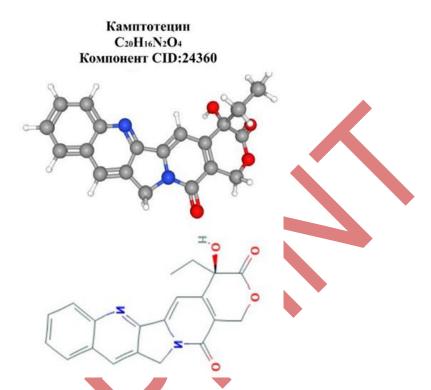


Рисунок 12. Химическая молекулярная структура камптотецина.

Figure 12. Chemical molecular structure of camptothecin.

Анализ экспрессии **BRIP1** на уровне белка

Как описано в предыдущем анализе, экспрессия мРНК BRIP1 была выше в клеточных линиях U251, U87, LN229, чем в клеточной линии HBA. Также была обнаружена высокая экспрессия белка в клеточных линиях U251, U87, LN229, чем в HBA (Рисунок 13). Мы подтвердили дифференциальную экспрессию в клеточных линиях U251, U87 и LN229, и HBA BRIP1 на уровне белка.

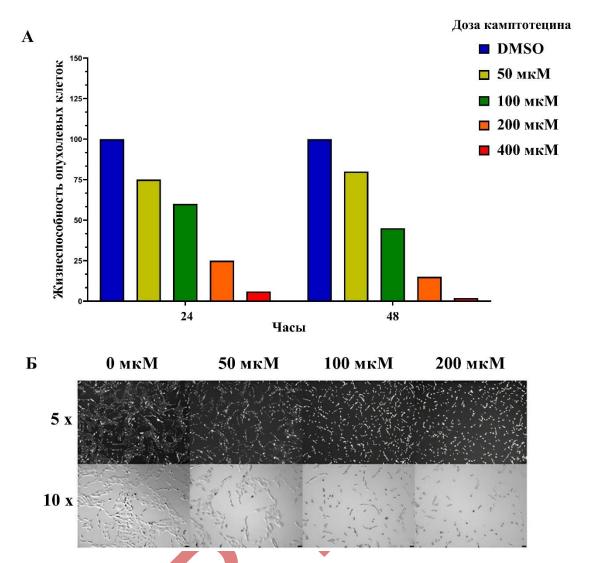


Рисунок 13. Вестерн-блот анализ оценки уровня экспрессии белка BRIP1 в клеточных линиях U251, U87, LN229 и HBA. ACTIN использовали в качестве контроля загрузки.

Figure 13. Western blot analysis of BRIP1 protein expression levels in U251, U87, LN229 and HBA cell lines. ACTIN was used as a loading control.

Противоопухолевый эффект камптотецина

потенциального противоопухолевого Для эффекта исследования камптотецина на глиому, клеточные линии U251 (клеточная линия, где самый высокий показатель уровня экспрессии BRIP1) подвергались воздействию различных концентраций камптотецина в течение 24 или 48 часов. Результаты анализа МТТ-теста показали, что камптотешин значительно снижал жизнеспособность опухолевых клеток в зависимости от дозы по сравнению с опухолевыми клетками, которые были обработаны DMSO, и которые были взяты как за контрольную группу (Рисунок 14A). Более того, мы заметили, что ингибирование пролиферации опухолевых клеток усиливалось после 24 часов обработки камптотецином, которая была продемонстрирована с помощью просвечивающей (трансмиссионный) электронной микроскопией (Рисунок 14Б). Эти результаты указывают на то, что камптотецин проявляет цитотоксичность и ингибирует рост клеток глиобластомы.

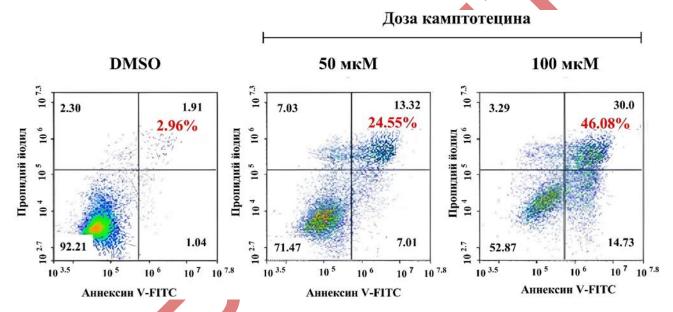


Рисунок 14. Камптотецин снижает жизнеспособность и пролиферацию клеточной линии глиомы U251. (А) Жизнеспособность клеток линии U251 определялась с помощью МТТ после воздействия различных концентраций камптотецина или 0,1% DMSO в течение 24 и 48 часов. Данные были нормализованы по отношению к контрольным клеткам, обработанным 0,1% DMSO. (В) Репрезентативные изображения клеточной линии U251 после обработки камптотецином в указанных концентрациях в течение 24 ч. Увеличение в 5 х и 10 х. р<0, 05.

Figure 14. Camptothecin reduces viability and proliferation of the U251 glioma cell line. (A) U251 cell viability was determined by MTT assay after exposure to different concentrations of camptothecin or 0.1% DMSO for 24 and 48 h. Data were normalized to control cells treated with 0.1% DMSO. (B) Representative

images of U251 cell line after treatment with camptothecin at the indicated concentrations for 24 h. Magnification was 5x and 10x. p<0.05.

Окрашивание аннексином V-FITC/PI показало, что доля апоптотических клеток была заметно увеличена в зависимости от дозы в клеточной линии глиом U251, когда их инкубировали с дозами камптотецина 50 мкМ и 100 мкМ. Процент апоптотических опухолевых клеток после 48-часовой обработки 0,1% DMSO и 50, и 100 мкМ камптотецина составил 2,96%, 24,55% и 46,08% соответственно (Рисунок 15).

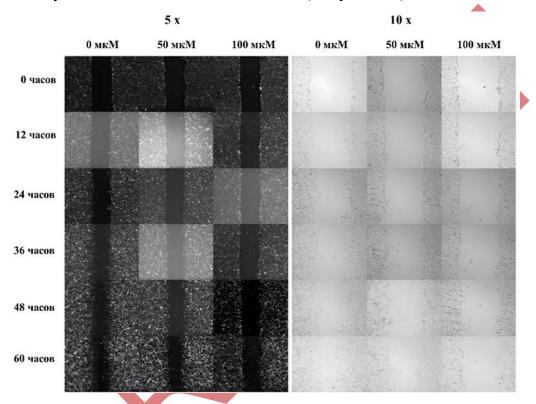


Рисунок 15. Камптотецин апоптоз в клеточной линии глиом U251. Апоптоз, вызванный камптотецина, измеряли с помощью набора для обнаружения апоптоза Annexin-V FITC/PI и проточной цитометрии. Данные представлены как среднее значение \pm SD трех независимых экспериментов. p < 0.05 (*) по сравнению с контрольной группой.

Figure 15. Camptothecin apoptosis in U251 glioma cell line. Camptothecin-induced apoptosis was measured using Annexin-V FITC/PI apoptosis detection kit and flow cytometry. Data are presented as mean \pm SD of three independent experiments. p < 0.05 (*) compared to the control group.

Затем мы исследовали возможности камптотецина ингибировать инвазию и миграцию опухолевых клеток глиомы при разных концентрациях и в разные

временные точки. Было продемонстрировано, что после воздействия камптотецином опухолевые клетки показали более медленную способность к «зарастания раны» (англ. wound healing assay), чем контрольная группа клеточной линии U251 обработанная DMSO, как показано на Рисунке. Эти результаты указывают на то, что камптотецин ингибировал миграцию и инвазию опухолевых клеток глиом *in vitro* (Рисунок 16).

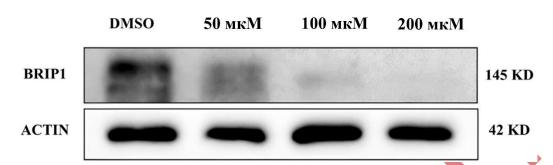

Рисунок 16. Камптотецин ингибирует миграцию и инвазию клеточной линии глиомы U251. Репрезентативные изображения и количественная оценка способности опухолевых клеток «зарастания раны» (англ. wound healing assay). Увеличение 5 х и 10 х. Планки погрешностей представляют собой SD (n=3), p<0,05.

Figure 16. Camptothecin inhibits migration and invasion of the U251 glioma cell line. Representative images and quantitative wound healing assay of tumor cells. Magnification 5x and 10x. Error bars represent SD (n=3), p<0.05.

Чтобы оценить влияние камптотецина на активность BRIP1, мы исследовали его экспрессию на уровне белка с помощью вестерн-блот анализа. Мы

наблюдали, что активность BRIP1 снижается при увеличении дозы камптотецина (Рисунок 17).

Доза камптотецина

Рисунок 17. Влияние камптотецина на активность **BRIP1** в ключной линии глиомы U251. Воздействия на опухолевые клетки различных доз камптотецина в течение 24 ч и определение активности **BRIP1** с помощью вестерн-блот анализа. p<0,05.

Figure 17. Effect of camptothecin on BRIP1 activity in U251 glioma cell line. Exposure of tumor cells to different doses of camptothecin for 24 h and determination of BRIP1 activity by Western blot analysis. p<0.05.

ОБСУЖДЕНИЕ

Результаты данного исследования демонстрируют важность BRIP1 в развитии и прогрессировании глиобластомы и его потенциальную роль в регуляции процессов репарации ДНК и клеточного цикла, что подтверждает выводы ряда исследований. Повышенная экспрессия BRIP1, выявленная на уровне белка, в клеточных линиях глиобластомы (U251, U87 и LN229) по сравнению с НВА, указывает на то, что BRIP1 может обеспечивать адаптивный механизм для выживания опухолевых клеток в условиях постоянного геномного стресса. Подобные наблюдения были описаны в ряде работ, где корреляция между усиленной активностью генов репарации, включая BRIP1, и агрессивным биологическим поведением опухолей приводила к ухудшению прогноза пациентов [9-11]. Особое внимание

заслуживает подтверждение взаимосвязи между активностью путей репарации ДНК и агрессивностью опухолевого процесса. Результаты GSEA показали, ЧТО BRIP1 ассоциирован с ключевыми анализа сигнальными путями, такими как репликация ДНК, гомологичная рекомбинация и клеточный цикл. Эти данные согласуются с результатами некоторых исследований, которые демонстрировали, что нарушения в путях репарации ДНК не только способствуют накоплению мутаций, но и обеспечивают устойчивость к традиционным методам противоопухолевой терапии, таким как химиотерапия [12, 13]. Таким образом, таргетирование BRIP1 и связанных с ним сигнальных путей может стать важной стратегией для преодоления резистентности к терапии пациентов с глиобластомой. Результаты других исследований in vitro и in vivo демонстрируют, что вмешательство в регуляцию генов, ответственных за репарацию ДНК, может не только непосредственно снижать жизнеспособность опухолевых клеток, но и усиливать эффект стандартных цитотоксических химиопрепаратов [14-16].

Ключевой результат нашего исследования – значительное снижение экспрессии BRIP1 и жизнеспособности клеток глиобластомы под действием камптотецина – подчеркивает, что ингибирование BRIP1 может быть эффективным стратегическим подходом в терапии этой опухоли. Камптотецин, ингибитор топоизомеразы I, вызывает накопление повреждений ДНК за счет блокирования реактивного восстановления разрывов в ДНК, что делает опухолевые клетки, имеющие повышенную активность репарационных механизмов, особенно уязвимыми к его воздействию [17, 18]. Индуцирование апоптоза и подавления клеточной миграции под воздействием камптотецина были ранее отмечены в исследованиях, где его использование приводило к значительному нарушению клеточного цикла в опухолевых клетках глиобластомы [19-25]. Наши данные дополняют эти наблюдения, предлагая, что именно через

воздействие BRIP1 на активность камптотецин может оказывать синергетический эффект с генотоксической терапии ряд химиопрепаратов или лучевой терапии, снижая способность клеток глиобластомы к репарации поврежденной ДНК. Кроме того, результаты анализа сети РРІ подчеркивают значимость BRIP1 как одного из центральных узлов в сети, В что свидетельствует 0 его участии сложных молекулярных взаимодействиях, регулирующих клеточную сигнализацию в глиобластоме. Это открывает перспективу для дальнейшего изучения молекулярных механизмов, лежащих в основе устойчивости опухолевых клеток к повреждениям ДНК, и позволяет рассматривать BRIP1 как потенциальную терапевтическую мишень в комбинированной терапии [26-28]. Дальнейшие исследования in vivo и клинические испытания могут определить оптимальные режимы применения камптотецина или его аналогов для достижения максимального терапевтического эффекта при таргетировании данного пути при глиобластоме [29-32].

Таким образом, наше исследование не только подтверждает важность BRIP1 в онкогенезе глиобластомы, но и демонстрирует, что вмешательство в регуляцию его экспрессии посредством камптотецина может существенно снижать жизнеснособность и инвазивные свойства опухолевых клеток. Полученные данные расширяют существующее понимание молекулярных механизмов, участвующих в репарации ДНК, и могут способствовать разработке более эффективных стратегий таргетной терапии глиобластомы.

ЗАКЛЮЧЕНИЕ

В настоящей работе проведен комплексный биоинформатический анализ и экспериментальное подтверждение роли гена BRIP1 в онкогенезе глиобластомы. Биоинформатический подход, основанный на анализе DEGs с использованием баз данных GEO, выявил значимую сверхэкспрессию BRIP1 при ГВСЗ по сравнению с ГНСЗ. Анализ сети PPI и функционального обогащения подтвердил центральную роль BRIP1 в путях репарации ДНК,

гомологичной рекомбинации, репликации ДНК и регуляции клеточного цикла, что подчеркивает его значение в поддержании злокачественного фенотипа опухолевых устойчивости клеток ИΧ И Экспериментальная часть исследования *in vitro* показала, что ингибирование BRIP1 с помощью камптотецина приводит к значительному дозозависимому снижению жизнеспособности и пролиферации опухолевых клеток линии глиобластомы U251. Эти результаты демонстрируют прямую связь между BRIP1 противоопухолевым эффектом экспрессии И подавлением камптотецина, что позволяет предположить его потенциальное применение для таргетной терапии глиобластомы. Полученные данные свидетельствуют о том, что BRIP1 является важным молекулярным маркером агрессивности потенциальной терапевтической мишенью при глиобластоме. И Камптотецин, как ингибитор экспрессии BRIP1 и индуктор повреждений ДНК, обладает выраженным противоопухолевым действием и перспективен для дальнейшего изучения и применения в комбинированной терапии глиобластомы. Для окончательного подтверждения терапевтического потенциала ингибирования BRIP1 и его клинической эффективности необходимы дополнительные исследования, включающие эксперименты in vivo и последующие клинические исследования. Идентификация BRIP1 как значимой молекулярной мишени расширяет наше понимание механизмов онкогенеза глиобластомы и открывает возможности для разработки таргетных терапевтических стратегий, которые ΜΟΓΥΤ повысить эффективность существующих подходов к лечению этой агрессивной опухоли.

Источники финансирования. Данное исследование не имело финансовой поддержки от сторонних организаций.

Funding. This study did not have financial support from third-party organizations.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Conflict of interests. The authors declare that there is no conflict of interest.

И.Ф. Гареев — написание авторов. черновика рукописи, визуализация, разработка методологии валидация, проведение исследования; О.А. Бейлерли — пересмотр и редактирование рукописи, анализ данных; Хонгли Жанг — проведение исследования и работа с C.A. Румянцев руководство данными; исследованием И администрирование проекта.

Authors' contributions. I.F. Gareev — writing a draft of the manuscript, visualization, validation, methodology development and research; O.A. Beylerli — revision and editing of the manuscript, data analysis; Hongli Zhang — conducting research and working with data; S.A. Rumyantsev — research management and project administration.

ORCID

Ilgiz F. Gareev orcid.org/0000-0002-4965-0835

Ozal A. Beylerli orcid.org/0000-0002-6149-5460

Hongli Zhang orcid.org/0009-0001-4036-519X

Sergey A. Roumiantsev orcid.org/0000-0002-7418-0222

ЛИТЕРАТУРА/REFERENCES

- 1. Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev. 2024 Jun 25;38(9-10):360-379. doi: 10.1101/gad.351427.123.
- 2. Hoogstrate Y, Draaisma K, Ghisai SA, van Hijfte L, Barin N, de Heer I, Coppieters W, van den Bosch TPP, Bolleboom A, Gao Z, Vincent AJPE, Karim L, Deckers M, Taphoorn MJB, Kerkhof M, Weyerbrock A, Sanson M, Hoeben A, Lukacova S, Lombardi G, Leenstra S, Hanse M, Fleischeuer REM, Watts C, Angelopoulos N, Gorlia T, Golfinopoulos V, Bours V, van den Bent MJ, Robe

- PA, French PJ. Transcriptome analysis reveals tumor microenvironment changes in glioblastoma. Cancer Cell. 2023 Apr 10;41(4):678-692.e7. doi: 10.1016/j.ccell.2023.02.019.
- 3. Dapash M, Hou D, Castro B, Lee-Chang C, Lesniak MS. The Interplay between Glioblastoma and Its Microenvironment. Cells. 2021 Aug 31;10(9):2257. doi: 10.3390/cells10092257.
- 4. Yamamoto H, Hirasawa A. Homologous Recombination Deficiencies and Hereditary Tumors. Int J Mol Sci. 2021 Dec 29;23(1):348. doi: 10.3390/ijms23010348.
- 5. Wang R, Zhang J, Cui X, Wang S, Chen T, Niu Y, Du X, Kong J, Wang L, Jiang Y. Multimolecular characteristics and role of BRCA1 interacting protein C-terminal helicase 1 (BRIP1) in human tumors: a pan-cancer analysis. World J Surg Oncol. 2023 Mar 13;21(1):91. doi: 10.1186/s12957-022-02877-8.
- 6. Toh M, Ngeow J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist. 2021 Sep;26(9):e1526-e1537. doi: 10.1002/onco.13829.
- 7. Wang X, Zhuang Y, Wang Y, Jiang M, Yao L. The recent developments of camptothecin and its derivatives as potential anti-tumor agents. Eur J Med Chem. 2023 Nov 15;260:115710. doi: 10.1016/j.ejmech.2023.115710.
- 8. Wang Z, Wang X, Yu H, Chen M. Glioma-targeted multifunctional nanoparticles to co-deliver camptothecin and curcumin for enhanced chemo-immunotherapy. Biomater Sci. 2022 Mar 2;10(5):1292-1303. doi: 10.1039/d1bm01987b.
- 9. Peleg Hasson S, Menes T, Sonnenblick A. Comparison of Patient Susceptibility Genes Across Breast Cancer: Implications for Prognosis and Therapeutic Outcomes. Pharmgenomics Pers Med. 2020 Jul 27;13:227-238. doi: 10.2147/PGPM.S233485.
- 10. Ichikawa H, Aizawa M, Kano Y, Hanyu T, Muneoka Y, Hiroi S, Ueki H, Moro K, Hirose Y, Miura K, Shimada Y, Sakata J, Yabusaki H, Nakagawa S, Kawasaki

- T, Okuda S, Wakai T. Landscape of homologous recombination deficiency in gastric cancer and clinical implications for first-line chemotherapy. Gastric Cancer. 2024 Nov;27(6):1273-1286. doi: 10.1007/s10120-024-01542-1.
- 11. Park W, Chen J, Chou JF, Varghese AM, Yu KH, Wong W, Capanu M, Balachandran V, McIntyre CA, El Dika I, Khalil DN, Harding JJ, Ghalehsari N, McKinnell Z, Chalasani SB, Makarov V, Selenica P, Pei X, Lecomte N, Kelsen DP, Abou-Alfa GK, Robson ME, Zhang L, Berger MF, Schultz N, Chan TA, Powell SN, Reis-Filho JS, Iacobuzio-Donahue CA, Riaz N, O'Reilly EM. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clin Cancer Res. 2020 Jul 1;26(13):3239-3247. doi: 10.1158/1078-0432.CCR-20-0418.
- 12. Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, Krais J, VanderVere-Carozza PS, Pawelczak KS, Calvo J, Panzarino NJ, Turchi JJ, Johnson N, Jonkers J, Rothenberg E, Cantor SB. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell. 2021 Aug 5;81(15):3128-3144.e7. doi: 10.1016/j.molcel.2021.06.011.
- 13. Del Valle J, Rofes P, Moreno-Cabrera JM, López-Dóriga A, Belhadj S, Vargas-Parra G, Teulé À, Cuesta R, Muñoz X, Campos O, Salinas M, de Cid R, Brunet J, González S, Capellá G, Pineda M, Feliubadaló L, Lázaro C. Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers (Basel). 2020 Mar 30;12(4):829. doi: 10.3390/cancers12040829.
- 14. Samoylova NA, Gureev AP, Popov VN. Methylene Blue Induces Antioxidant Defense and Reparation of Mitochondrial DNA in a Nrf2-Dependent Manner during Cisplatin-Induced Renal Toxicity. Int J Mol Sci. 2023 Mar 24;24(7):6118. doi: 10.3390/ijms24076118.
- 15. Teyssonneau D, Margot H, Cabart M, Anonnay M, Sargos P, Vuong NS, Soubeyran I, Sevenet N, Roubaud G. Prostate cancer and PARP inhibitors: progress and challenges. J Hematol Oncol. 2021 Mar 29;14(1):51. doi: 10.1186/s13045-021-01061-x.

- 16. Song Z, Lu C, Xu CW, Zheng Z. Noncanonical Gene Fusions Detected at the DNA Level Necessitate Orthogonal Diagnosis Methods Before Targeted Therapy. J Thorac Oncol. 2021 Mar;16(3):344-348. doi: 10.1016/j.jtho.2020.12.006.
- 17. Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. Nanoscale. 2023 Nov 16;15(44):17658-17697. doi: 10.1039/d3nr04147f. Erratum in: Nanoscale. 2025 Jan 29;17(5):2912. doi: 10.1039/d4nr90241f.
- 18. Bardia A, Krop IE, Kogawa T, Juric D, Tolcher AW, Hamilton EP, Mukohara T, Lisberg A, Shimizu T, Spira AI, Tsurutani J, Damodaran S, Papadopoulos KP, Greenberg J, Kobayashi F, Zebger-Gong H, Wong R, Kawasaki Y, Nakamura T, Meric-Bernstam F. Datopotamab Deruxtecan in Advanced or Metastatic HR+/HER2- and Triple-Negative Breast Cancer: Results From the Phase I TROPION-PanTumor01 Study. J Clin Oncol. 2024 Jul 1;42(19):2281-2294. doi: 10.1200/JCO.23.01909.
- 19. Chiou J, Impedovo V, Huynh YB, Gorgoglione R, Penalva LOF, Lodi A, Brenner AJ, Tiziani S. Targeting Metabolic and Epigenetic Vulnerabilities in Glioblastoma with SN-38 and Rabusertib Combination Therapy. Int J Mol Sci. 2025 Jan 8;26(2):474. doi: 10.3390/ijms26020474.
- 20. Li M, Zhang X, Zhou Y, Chu Y, Shen J, Cai Y, Sun X. Near Infrared-Activatable Biomimetic Nanoplatform for Tumor-Specific Drug Release, Penetration and Chemo-Photothermal Synergistic Therapy of Orthotopic Glioblastoma. Int J Nanomedicine. 2024 Jul 11;19:6999-7014. doi: 10.2147/IJN.S466268.
- 21. Ruan Q, Patel G, Wang J, Luo E, Zhou W, Sieniawska E, Hao X, Kai G. Current advances of endophytes as a platform for production of anti-cancer drug camptothecin. Food Chem Toxicol. 2021 May;151:112113. doi: 10.1016/j.fct.2021.112113.
- 22. Kamle M, Pandhi S, Mishra S, Barua S, Kurian A, Mahato DK, Rasane P, Büsselberg D, Kumar P, Calina D, Sharifi-Rad J. Camptothecin and its

- derivatives: Advancements, mechanisms and clinical potential in cancer therapy. Med Oncol. 2024 Oct 9;41(11):263. doi: 10.1007/s12032-024-02527-x.
- 23. Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. Small Methods. 2024 Aug;8(8):e2301271. doi: 10.1002/smtd.202301271.
- 24. Luo X, Chi X, Lin Y, Yang Z, Lin H, Gao J. A camptothecin prodrug induces mitochondria-mediated apoptosis in cancer cells with cascade activations. Chem Commun (Camb). 2021 Oct 21;57(84):11033-11036. doi: 10.1039/d1cc04379j.
- 25. Xie J, Wang H, Huang Q, Lin J, Wen H, Miao Y, Lv L, Ruan D, Yu X, Qin L, Zhou Y. Enhanced cytotoxicity to lung cancer cells by mitochondrial delivery of camptothecin. Eur J Pharm Sci. 2023 Oct 1;189:106561. doi: 10.1016/j.ejps.2023.106561.
- 26. Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol. 2022 Sep;59(9):5326-5365. doi: 10.1007/s12035-022-02915-2.
- 27. Chen C, Wu ZH, Lu XJ, Shi JL. BRIP1 Induced Ferroptosis to Inhibit Glioma Cells and was Associated with Increased Oxidative Stress. Discov Med. 2024 Nov;36(190):2264-2273. doi: 10.24976/Discov.Med.202436190.208.
- 28. de Sousa JF, Torrieri R, Serafim RB, Di Cristofaro LF, Escanfella FD, Ribeiro R, Zanette DL, Paçó-Larson ML, da Silva WA Jr, Tirapelli DP, Neder L, Carlotti CG Jr, Valente V. Expression signatures of DNA repair genes correlate with survival prognosis of astrocytoma patients. Tumour Biol. 2017 Apr;39(4):1010428317694552. doi: 10.1177/1010428317694552.
- 29. Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM, Czepczyński R, Ruchała M. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology. 2023;108(5):423-431. doi: 10.1159/000531319.

- 30. Abdel-Rahman SA, Gabr M. Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma. Cancers (Basel). 2024 Jan 19;16(2):435. doi: 10.3390/cancers16020435.
- 31. Hoosemans L, Vooijs M, Hoeben A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers (Basel). 2024 Aug 29;16(17):3021. doi: 10.3390/cancers16173021.
- 32. Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol. 2022 Jun 17;12:911876. doi: 10.3389/fonc.2022.911876.