Молекулярные механизмы инициирования и модуляции аутоиммунного процесса микроорганизмами
- Авторы: Киселева Е.П.1, Михайлопуло К.И.1, Новик Г.И.2, Сорока Н.Ф.3
-
Учреждения:
- ГНУ «Институт биоорганической химии НАН Беларуси»
- ГНУ «Институт микробиологии НАН Беларуси»
- УО «Белорусский государственный медицинский университет»
- Выпуск: Том 20, № 1 (2021)
- Страницы: 99-113
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Статья получена: 17.04.2021
- Статья одобрена: 17.04.2021
- Статья опубликована: 17.04.2021
- URL: https://hemoncim.com/jour/article/view/486
- DOI: https://doi.org/10.24287/1726-1708-2021-20-1-99-113
- ID: 486
Цитировать
Полный текст
Аннотация
Инфекционные агенты являются наиболее известными экологическими факторами, провоцирующими и модулирующими аутоиммунные заболевания. Молекулярные механизмы, лежащие в основе этого явления, включают молекулярную мимикрию, распространение эпитопов и обеспечение доступности криптических эпитопов аутоантигенов, активацию в присутствии свидетеля, эффект адъюванта, поликлональную активацию В-лимфоцитов и Т-лимфоцитов бактериальными суперантигенами. Непатогенные микроорганизмы и инфекционные агенты могут также защищать людей от аутоиммунных заболеваний посредством активации регуляторных Т-лимфоцитов и смещения равновесия между Т-лимфоцитами-хелперами классов 1 и 2 в пользу последних. Данное исследование одобрено независимым этическим комитетом и утверждено решением ученого совета ГНУ «Институт биоорганической химии НАН Беларуси».
Об авторах
Е. П. Киселева
ГНУ «Институт биоорганической химии НАН Беларуси»
Автор, ответственный за переписку.
Email: epkiseleva@yandex.by
ORCID iD: 0000-0003-3304-2277
220141, Минск, ул. Академика В.Ф. Купревича, 5, корп. 2
БелоруссияК. И. Михайлопуло
ГНУ «Институт биоорганической химии НАН Беларуси»
ORCID iD: 0000-0002-4577-5964
Минск
БелоруссияГ. И. Новик
ГНУ «Институт микробиологии НАН Беларуси»
ORCID iD: 0000-0002-4857-6426
Минск
БелоруссияН. Ф. Сорока
УО «Белорусский государственный медицинский университет»
ORCID iD: 0000-0002-9915-2965
Минск
БелоруссияСписок литературы
- Kivity S., Agmon-Levin N., Blank M., Shoenfeld Y. Infections and autoimmunity – friends or foes? Trends Immunol 2009; 30 (8): 409–14. doi: 10.1016/j.it.2009.05.005
- Ercolini A.M., Miller S.D. The role of infections in autoimmune disease. Clin Exp Immunol 2009; 155 (1): 1–15.
- Ceccarelli F., Agmon-Levin N., Perricone C. Genetic factors of autoimmune diseases. J Immunol Res 2017; 2017: 2789242. doi: 10.1155/2017/2789242
- Mariani S.M. Genes and autoimmune diseases - a complex inheritance. Med Gen Med 2004; 6 (4): 18.
- Ramos P.S, Shedlock A.M, Langefeld C.D. Genetics of autoimmune diseases: insights from population genetics. Journal of Human Genetics 2015; 60 (11): 657–64.
- Taneja V., Mangalam A., David C.S. Chapter 27. Genetic predisposition to autoimmune diseases conferred by the major histocompatibility complex: utility of animal models. In: Rose N., Mackay I., editors. The Autoimmune Diseases, 5th edition. San Diego, CA: Academic Press/ Elsevier; 2014. Рp. 365–80. Доступно по: https://doi.org/10.1016/C2009-0-64586-4. Ссылка активна на 02.02.2021.
- Wanstrat A., Wakeland E. The genetics of complex autoimmune diseases: nonMHC susceptibility genes. Nat Immunol 2001; 2 (9): 802–9.
- Oldstone M.B. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol 2005; 296: 1–17. doi: 10.1007/3-540-30791-5_1
- Fujinami R.S., Oldstone M.B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–5.
- Trost B., Lucchese G., Stufano A., Bickis M., Kusalik A., Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self Nonself 2010; 1 (4): 328–34. doi: 10.4161/self.1.4.13315
- Hebbes T.R., Turner C. H., Thorne A. W., Crane-Robinson C. A “minimal epitope” anti-protein antibody that recognizes a single modified amino acid. Mol Immunol 1989; 26 (9): 865–73.
- Forsström B., Bisławska Axnäs B., Stengele K.-P., Bühler J., Albert T.J., Richmond T.A., et al. Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 2014; 13: 1585–97.
- Peng H.P., Lee K.H., Jian J.W., Yang A.S. Origins of specificity and affinity in antibody-protein interactions. Proc Natl Acad Sci USA 2014; 111: E2656–65.
- Pahari S., Chatterjee D., Negi S., Kaur J., Singh B., Agrewala J.N. Morbid sequences suggest molecular mimicry between microbial peptides and self-antigens: a possibility of inciting autoimmunity. Front Microbiol 2017; 8: 1938.
- Sanchez-Trincado J.L., Gomez-Perosanz M., Reche P.A. Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res 2017; 2017: 2680160. doi: 10.1155/2017/2680160
- Lafuente E.M., Reche P.A. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Current Pharmaceutical Design 2009; 15 (28): 3209– 20.
- Jensen P.E. Recent advances in antigen processing and presentation. Nat Immunol 2007; 8 (10): 1041–8.
- Wilson D.B., Wilson D.H., Schroder K., Pinilla C., Blondelle S., Houghten R.A., Garcia K.C. Specificity and degeneracy of T cells. Mol Immunol 2004; 40 (14–15): 1047–55.
- Wucherpfennig K.W. T cell receptor crossreactivity as a general property of T cell recognition. Mol Immunol 2004; 40 (14-15): 1009–17.
- Petrova G., Ferrante A., Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol 2012; 32 (4): 349–72.
- Bentzen A.K., Hadrup S.R. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. Immuno-Oncol Technol 2019; 2: 1–10.
- Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 1998; 19: 395– 404.
- Münz C., Lünemman J.D., Getts M.T., Miller S.D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009; 9 (4): 246–58.
- Nino-Vasquez J., Allicotti G., Borras E., Wilson D.B., Valmori D., Simon R., et al. A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Mol Immunol 2004; 40 (14–15): 1063–74.
- Dhanda S.K., Gupta S., Vir P., Raghava G.P. Prediction of IL4 inducing peptides. Clin Dev Immunol 2013; 2013: 263952. doi: 10.1155/2013/263952
- Dhanda S.K., Vir P., Raghava G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 2013; 8: 30.
- Shahrizaila N., Yuki N. Guillain-Barré syndrome animal model: the first proof of molecular mimicry in human autoimmune disorder. J Biomed Biotechnol 2011; 2011: 829129.
- Rees J.H., Soudain S.E., Gregson N.A., Hughes R.A.C. Campylobacter jejuni infection and Guillain-Barré syndrome. New Eng J Med 1995; 333 (21): 1374–9.
- Schwimmbeck P.L, Dyrberg T., Drachman D., Oldstone M.B.A. Molecular mimicry and myasthenia gravis: an autoantigenic site of the acetylcholine receptor a-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989; 84 (4): 1174–80.
- Bachmaier K., Neu N., de la Maza L.M., Pal S., Hessel A., Penninger J.M. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999; 283 (5406): 1335–9.
- Gangaplara A., Massilamany C., Brown D.M., Delhon G., Pattnaik A.K., Chapman N., et al. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clin Immunol 2012; 144 (3): 237–49.
- Regner M., Lambert P.H. Autoimmunity through infection or immunization? Nat Immunol 2001; 2 (3): 185–8.
- Filippi C.M., von Herrathi M.G. Viral trigger for type I diabetes. Pros and Cons Diabetes 2008; 57 (11): 2863–71.
- Honeyman M.C., Stone N.L., Falk B.A., Nepom G., Harrison L.C. Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 2010; 184 (4): 2204–10.
- Roep B.O., Hiemstra H.S., Schloot N.C., de Vries R.R.P, Chaudhuri A., Behan P.O., Drijfhout J.W. Molecular mimicry in type I diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not coxsackie virus. Ann N Y Acad Sci 2002; 958: 163–5.
- Fairweather D., Frisancho-Kiss S., Rose N.R. Viruses as adjuvants for autoimmunity: evidence from coxsackievirus-induced myocarditis. Rev Med Virol 2005; 15 (1): 17–27.
- Getts M.T., Miller S.D. 99th Dahlem conference on infection, infl ammation and chronic inflammatory disorders: triggering of autoimmune diseases by infections. Clin Exp Immunol 2010; 160 (1): 15–21.
- Root-Bernstein R. Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: laminin, collagen IV, CAR, and B1AR as initial targets of disease. Front Pediatr 2014; 2: 85.
- Bachmaier K., Neu N., de la Maza L.M., Pal S., Hessel A., Penninger J.M. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999; 283 (5406): 1335–9.
- Ang C.W., Jacobs B.C., Laman J.D. The Guillain-Barre syndrome: a true case of molecular mimicry. Trends Immunol 2004; 25 (2): 61–6.
- Rose N.R. The adjuvant effect in infection and autoimmunity. Clin Rev Allergy Immunol 2008; 34 (3): 279–82.
- Pradhan V.D., Das S., Surve P., Ghosh K. Toll-like receptors in autoimmunity with special reference to systemic lupus erythematosus. Indian J Hum Genet 2012; 18 (2): 155–60.
- Cunha-Neto E., Bilate A.M., Hyland K.V., Fonseca S.G., Kalil J., Engman D.M. Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 2006; 39 (1): 41–54.
- Montes C.L., Acosta-Rodríguez E.V., Merino M.C., Bermejo D.A., Gruppi A. Polyclonal B cell activation in infections: infectious agents’ devilry or defense mechanism of the host? J Leukoc Biol 2007; 82 (5): 1027–32.
- Bogner U., Wall J.R., Schleusener H. Cellular and antibody mediated cytotoxicity in autoimmune thyroid disease. Acta Endocrinologica 1987; 116 (1 Suppl): S133–8. 46. Russell J.H., Ley T.J. Lymphocyte-mediated cytotoxicity. Ann Rev Immunol 2002; 20 (6): 323–70.
- Raúl V., Romána G., Murrayb J.C., Weiner L.M. Chapter 1. Antibody-dependent cellular cytotoxicity (ADCC). In: Ackerman M.E., Nimmerjahn F., editors. Antibody Fc. Linking adaptive and innate immunity. San Diego, CA, Elsevier/Academic Press; 2014. Рp. 1–27. Доступно по: https://doi.org/10.1016/C2011-0- 07091-6. Ссылка активна на 02.02.2021.
- Varela J.C., Tomlinson S. Complement: an overview for the clinician. Hematol Oncol Clin North Am 2015; 29 (3): 409– 27.
- Liblau R.S., Wong F.S., Mars L.T., Santamaria P. Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity 2002; 17 (1): 1–6.
- Ma W.-T., Gao F., Gu K., Chen D.-K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol 2019; 10: 1140.
- Schleinitz N., Vély F., Harlé J.-R., Vivier E. Natural killer cells in human autoimmune diseases. Immunology. 2010; 131 (4): 451–8.
- Lehmann P.V., Targoni O.S., Forsthuber T.G. Shifting T-cell activation thresholds in autoimmunity and determinant spreading. Immunol Rev 1998; 164 (1): 53–61.
- Cunningham M.W. Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol 2014; 33 (4): 314–29.
- Cohen I.R., Young D.B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991; 12 (4): 105–10.
- Fujinami R.S., von Herrath M.G., Christen U., Whitton J.L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 2006; 19 (1): 80–94.
- Pane J.A., Coulson B.S. Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia 2015; 58 (6): 1149 –59.
- Lee H.-G., Lee J.-U., Kim D.-H., Lim S., Kang I., Choi J.-M. Pathogenic function of bystander-activated memory-like CD4+ T cells in autoimmune encephalomyelitis. Nature Communications 2019; 10: 709.
- Nogai A., Siffrin V., Bonhagen K., Pfueller C.F., Hohnstein T., Volkmer-Engert R., et al. Lipopolysaccharide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4 cells. J Immunol 2005; 175 (2): 959–66.
- Kawai T., Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21 (4): 317–37.
- El-Zayat S.R., Sibaii H., Mannaa F.A. Tolllike receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 2019; 43 (1): 187.
- Chiffoleau E. C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front Immunol 2018; 9: 227.
- Kim Y.K., Shin J.S., Nahm M.H. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 2016; 57 (1): 5–14.
- Loo Y.-M., Gale M. Immune signaling by RIG-I-like receptors. Immunity 2011; 34 (5): 680–92.
- Lang K.S., Recher M., Junt T., Navarini A.A., Harris N.L., Freigang S., et al. Toll-like receptor engagement covers T-cell autoreactivity into overt autoimmune disease. Nat Med 2005; 11 (2): 138–45.
- Haas A., Zimmermann K., Oxenius A. Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. J Virol 2011; 85 (23): 12102–13.
- Shoenfeld Y., Agmon-Levin N. ‘ASIA’-Autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun 2011; 36: 4–8.
- Hawkes D., Benhamu J., Sidwell T., Miles R., Dunlop R.A. Revisiting adverse reactions to vaccines: a critical appraisal of autoimmune syndrome induced by adjuvants (ASIA). J Autoimmun 2015; 59: 77–84.
- Soriano A., Nesher G., Shoenfeld Y. Predicting post-vaccination autoimmunity: Who might be at risk? Pharmacol Res 2015; 92: 18–22.
- van der Laan J.W., Gould S., Tanir J.Y. Safety of vaccine adjuvants: focus on autoimmunity. Vaccine 2015; 33 (11): 1507–14.
- Schiff enbauer J. Superantigens and their role in autoimmune disorders. Archivum Immunologiae et Therapiae Experimentalis 1999; 47 (1): 17–24.
- Rott O., Charreire J., Cash E. Influenza A virus hemagglutinin is a B cell-superstimulatory lectin. Med Microbiol Immunol 1996; 184 (4): 185–93.
- Ram M. The putative protective role of hepatitis B virus (HBV) infection from autoimmune disorders. Autoimmunity 2008; 7 (8): 621–5.
- Viau M., Longo N.S., Lipsky P.E., Björck L., Zouali M. Specific in vivo deletion of B-cell subpopulations expressing human immunoglobulins by the B-cell superantigen protein L. Infect Immun 2004; 72 (6): 3515–23.
- Wikström M., Sjöbring U., Drakenberg T., Forsén S., Björck L. Mapping of the immunoglobulin light chain-binding site of protein L. J Mol Biol 1995; 250 (2): 128–33.
- Nilson B.H., Solomon A., Björck L., Akerström B. Protein L from Peptostreptococcus Magnus binds to the kappa light chain variable domain. J Biol Chem 1992; 267 (4): 2234–9.
- Watanabe K., Kumada H., Yoshimura F., Umemoto T. The induction of polyclonal B-cell activation and interleukin-1 production by the 75-kDa cell surface protein from Porphyromonas gingivalis in mice. Arch Oral Biol 1996; 41 (8–9): 725– 31.
- Murphy K., Travers P., Walport M. Сhapter 5. Antigen presentation to T-lymphocytes. In: Murphy K., Travers P., Walport M., editors. Janeway's Immunobiology. 7th edition. New York. USA: Garland Science; 2008. Pp. 206–7. Доступно по: https://www.ncbi.nlm.nih.gov/books/NBK10766. Ссылка активна на 02.02.2021.
- Cordeiro-Da-Silva A., Borges M.C., Guilvard E., Ouaissi A. Dual role of the Leishmania major ribosomal protein S3a homologue in regulation of T- and B-cell activation. Infect Immun 2001; 69 (11): 6588–96.
- Domiati-Saad R., Attrep J.F., Brez inschek H.P., Cherrie A.H., Karp D.R., Lipsky P.E. Staphylococcal enterotoxin D functions as a human B-cell superantigen by rescuing VH4-expressing B cells from apoptosis. J Immunol 1996; 156 (10): 3608–20.
- Domiati-Saad R., Lipsky P.E. Staphylococcal enterotoxin A induces survival of VH3-expressing human B cells by binding to the VH region with low affinity. J Immunol 1998; 161 (3): 1257–66.
- Karray S., Juompan L., Maroun R.C., Isenberg D., Silverman G.J., Zouali M. Structural basis of the gp120 superantigen-binding site on human immunoglobulins. J Immunol 1998; 161 (12): 6681–8.
- Chung N.P.Y., Matthews K., Klasse P.J., Sanders R.W., Moore J.P. HIV-1 gp120 impairs the induction of B cell responses by TLR9-activated plasmacytoid dendritic cells. J Immunol 2012; 189 (11): 5257–65.
- Dörner T., Giesecke C., Lipsky P.E. Mechanisms of B cell autoimmunity in SLE. Arthritis Research and Therapy 2011; 13 (5): 243.
- Proft T., Fraser J.D. Bacterial superantigens. Clin Exp Immunol 2003; 133 (3): 299–306. 85. Schiffenbauer J. Superantigens and their role in autoimmune disorders. Arch Immunol Ther Ex 1999; 47 (1): 17–24.
- Strachan D. Family size, infection and atopy: The first decade of the “hygiene hypothesis”. Thorax 2000; 55 (Suppl 1): 2–5. 87. Rook G.A.W. Microbes, immunoregulation, and the gut. Gut 2005; 54 (3): 317– 20.
- Kiseleva E.P., Novik G.I. Probiotics as immunomodulators: substances, mechanisms and therapeutic benefits. In: Mendez-Vilas A., editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz, Spain: Formatex Research Center; 2013. 3: 1864–76. Доступно по: https://api.semanticscholar.org/CorpusID:42172455. Ссылка активна на 02.02.2021.
Дополнительные файлы



