Возможности иммунотерапии в лечении COVID-19
- Авторы: Малкова А.М.1, Старшинова А.А.2, Кудрявцев И.В.3,4, Довгалюк И.Ф.5, Зинченко Ю.С.5, Кудлай Д.А.6,7
-
Учреждения:
- ФГБОУ ВО «Санкт-Петербургский государственный университет»
- ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
- ФГБНУ «Институт экспериментальной медицины»
- ФГАОУ ВО «Дальневосточный федеральный университет»
- ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России
- ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
- ФГБУ «Государственный научный центр «Институт иммунологии» ФМБА России
- Выпуск: Том 20, № 3 (2021)
- Страницы: 158-168
- Раздел: ОБЗОР ЛИТЕРАТУРЫ
- Статья получена: 08.10.2021
- Статья одобрена: 08.10.2021
- Статья опубликована: 08.10.2021
- URL: https://hemoncim.com/jour/article/view/556
- DOI: https://doi.org/10.24287/1726-1708-2021-20-3-158-168
- ID: 556
Цитировать
Полный текст
Аннотация
Достаточно высокую смертность при COVID-19 можно объяснить развитием гипервоспалительного синдрома, характеризующегося цитокиновым штормом и обширным тромбообразованием. Основным направлением по предотвращению развития гипервоспалительного синдрома и по снижению летальности от COVID-19 является иммунная терапия, однако данные об эффективности и критериях назначения иммунных препаратов весьма разнородны. Целью данного обзора является анализ результатов клинических исследований по применению различных видов иммунной терапии при COVID-19 и возможных критериев ее назначения. Анализ литературных данных показал, что из существующих вариантов иммунной терапии наиболее эффективными оказались моноклональные антитела к IL-6, а также использование плазмы доноров на ранних этапах лечения. Ингибиторы янус-киназы, внутривенный иммуноглобулин способствовали улучшению клинического состояния пациентов, однако не влияли на уровень смертности. Авторами статьи был проведен анализ возможных маркеров предикторов развития цитокиновгого шторма. Наибольшую информативность и доступность в клинической практике на данный момент показали повышение количества нейтрофилов > 11 × 103/мл, снижение количества лимфоцитов > 1000 × 103/мл, повышение уровня IL-6 > 24 пг/мл, лактатдегидрогеназы > 300 МЕ/л, Д-димера > 1000 нг/мл и С-реактивного белка > 10 мг/дл.
Ключевые слова
Об авторах
А. М. Малкова
ФГБОУ ВО «Санкт-Петербургский государственный университет»
ORCID iD: 0000-0002-3880-1781
Санкт-Петербург
РоссияА. А. Старшинова
ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
Автор, ответственный за переписку.
Email: starshinova_777@mail.ru
ORCID iD: 0000-0002-9023-6986
Старшинова Анна Андреевна, д-р мед. наук, начальник Управления научными исследованиями
197341, Cанкт-Петербург, ул. Аккуратова, 2
РоссияИ. В. Кудрявцев
ФГБНУ «Институт экспериментальной медицины»; ФГАОУ ВО «Дальневосточный федеральный университет»
Санкт-Петербург
Владивосток
РоссияИ. Ф. Довгалюк
ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России
ORCID iD: 0000-0001-8383-8519
Санкт-Петербург
РоссияЮ. С. Зинченко
ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России
ORCID iD: 0000-0002-6273-4304
Санкт-Петербург
РоссияД. А. Кудлай
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет); ФГБУ «Государственный научный центр «Институт иммунологии» ФМБА России
ORCID iD: 0000-0003-1878-4467
Москва
РоссияСписок литературы
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
- Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382 (8): 727–33. doi: 10.1056/NEJMoa2001017
- Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., et al. Structural and Functional Basis of SARSCoV-2 Entry by Using Human ACE2. Cell 2020; 181 (4): 894–904.e9. doi: 10.1016/j.cell.2020.03.045
- Beigel J.H., Voell J., Kumar P., Raviprakash K., Wu H., Jiao J.A., et al. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis 2018; 18 (4): 410–8. doi: 10.1016/S1473-3099(18)30002-1
- Ko J.H., Seok H., Cho S.Y., Ha Y.E., Baek J.Y., Kim S.H., et al. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: A single centre experience. Antivir Ther 2018; 23 (7): 617–22. doi: 10.3851/IMP3243
- Cheng Y., Wong R., Soo Y.O.Y., Wong W.S., Lee C.K., Ng M.H.L., et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24 (1): 44–6. doi: 10.1007/s10096-004-1271-9
- Козлов В.А., Савченко А.А., Кудрявцев И.В., Козлов И.Г., Кудлай Д.А., Продеус А.П. и др. Клиническая иммунология. Красноярск: Поликор; 2020. 386 с.
- Чугунов А.А., Салухов В.В., Данцева О.В., Харитонов М.А., Рудаков Ю.В., Болехан А.В. и др. Некоторые аспекты применения глюкокортикоидных препаратов в комплексном лечении новой коронавирусной инфекции. Медицинский Альянс 2021; 9 (1): 43–51.
- Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054–62. doi: 10.1016/S0140-6736(20)30566-3
- Tan C.W., Low J.G.H., Wong W.H., Chua Y.Y., Goh S.L., Ng H.J. Critically ill COVID-19 infected patients exhibit increased clot waveform analysis parameters consistent with hypercoagulability. Am J Hematol 2020; 95 (7): E156–8. doi: 10.1002/ajh.25822
- Lei J., Li J., Li X., Qi X. CT imaging of the 2019 novel coronavirus (2019-NCoV) pneumonia. Radiology 2020; 295 (1): 18. doi: 10.1148/radiol.2020200236
- Malkova A., Kudlay D., Kudryavtsev I., Starshinova A., Yablonskiy P., Shoenfeld Y. Immunogenetic predictors of severe covid-19 Vaccines (Basel) 2021; 9 (3): 211. doi: 10.3390/vaccines9030211
- Fink S.L., Cookson B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73 (4): 1907–16. doi: 10.1128/IAI.73.4.1907-1916.2005
- Zhang H., Zhou P., Wei Y., Yue H., Wang Y., Hu M., et al. Histopathologic changes and SARS-COV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020; 172 (9): 629–32. doi: 10.7326/M20-0533
- Yang M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electron J 2020. Available from: https://papers.ssrn.com/abstract=3527420
- Ciceri F., Beretta L., Scandroglio A.M., Colombo S., Landoni G., Ruggeri A., et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020; 22 (2): 95–7.
- Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L., et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) [published online ahead of print Feb 12, 2020]. medRxiv. doi: 10.1101/2020.02.10.20021832
- Kang S., Tanaka T., Narazaki M., Kishimoto T. Targeting Interleukin-6 Signaling in Clinic. Immunity 2019; 50 (4): 1007–23. doi: 10.1016/j.immuni.2019.03.026
- Moore J.B., June C.H. Cytokine release syndrome in severe COVID- 19. Science 2020; 368 (6490): 473–4. doi: 10.1126/science.abb8925
- Tanaka T., Narazaki M., Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016; 8 (8): 959–70. doi: 10.2217/imt-2016-0020
- Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A., et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020; 5 (11): е138999. doi: 10.1172/jci.insight.138999
- Raucci F., Mansour A.A., Casillo G.M., Saviano A., Caso F., Scarpa R., et al. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun Rev 2020; 19 (7): 102572. doi: 10.1016/j.autrev.2020.102572
- Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M., et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020; 217 (6): e20200652. doi: 10.1084/jem.20200652
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/.
- AminJafari A., Ghasemi S. The possible of immunotherapy for COVID- 19: A systematic review. Int Immunopharmacol 2020; 83: 106455. doi: 10.1016/j.intimp.2020.106455
- Blanco-Melo D., Nilsson-Payant B.E., Liu W.C., Uhl S., Hoagland D., Møller R., et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020; 181 (5): 1036–45.e9.
- Chen I.Y., Moriyama M., Chang M.F., Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019; 10: 50. doi: 10.3389/fmicb.2019.00050
- Loppnow H., Libby P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J Clin Invest 1990; 85 (3): 731–8. doi: 10.1172/JCI114498
- Buckley L.F., Wohlford G.F., Ting C., Alahmed A., Van Tassell B.W., Abbate A., et al. Role for Anti-Cytokine Therapies in Severe Coronavirus Disease 2019. Crit Care Explor 2020; 2 (8): e0178. doi: 10.1097/CCE.0000000000000178
- Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., et al. Interleukin-1 blockade with highdose anakinra in patients with COVID- 19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol 2020; 2 (6): e325–31. doi: 10.1016/S2665-9913(20)30127-2
- Pontali E., Volpi S., Signori A., Antonucci G., Castellaneta M., Buzzi D., et al. Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia. J Allergy Clin Immunol 2021; 147 (4): 1217–25. doi: 10.1016/j.jaci.2021.01.024
- Ucciferri C., Auricchio A., Di Nicola M., Potere N., Abbate A., Cipollone F., et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2020; 2 (8): e457–8. doi: 10.1016/S2665-9913(20)30167-3
- Xu X., Han M., Li T., Sun W., Wang D., Fu B., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 2020; 117 (20): 10970–5. doi: 10.1073/pnas.2005615117
- Malekzadeh R., Abedini A., Mohsenpour B., Sharifipour E., Ghasemian R., Javad-Mousavi S.A., et al. Subcutaneous tocilizumab in adults with severe and critical COVID-19: A prospective open-label uncontrolled multicenter trial. Int Immunopharmacol 2020; 89: 107102. doi: 10.1016/j.intimp.2020.107102
- Stone J.H., Frigault M.J., Serling-Boyd N.J., Fernandes A.D., Harvey L., Foulkes A.S., et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med 2020; 383 (24): 2333–44. doi: 10.1056/NEJMoa2028836
- Alattar R., Ibrahim T.B.N., Shaar S.H., Abdalla S.A., Shukri K., Daghfal J.N., et al. Tocilizumab for the treatment of severe coronavirus disease 2019. J Med Virol 2020; 92: 2042–9.
- Tsai A., Diawara O., Nahass R.G., Brunetti L. Impact of tocilizumab administration on mortality in severe COVID- 19. Sci Rep 2020; 10 (1): 19131. doi: 10.1038/s41598-020-76187-y
- Klopfenstein T., Zayet S., Lohse A., Balblanc J.C., Badie J., Royer P.Y., et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect 2020; 50: 397–400.
- Toniati P., Piva S., Cattalini M., Garrafa E., Regola F., Castelli F., et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020; 19 (7): 102568. doi: 10.1016/j.autrev.2020.102568
- Guaraldi G., Meschiari M., CozziLepri A., Milic J., Tonelli R., Menozzi M., et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2020; 2 (8): e474–84. doi: 10.1016/S2665-9913(20)30173-9
- Potere N., Di Nisio M., Cibelli D., Scurti R., Frattari A., Porreca E., et al. Interleukin-6 receptor blockade with subcutaneous tocilizumab in severe COVID-19 pneumonia and hyperinflammation: a case-control study. Ann Rheum Dis 2021; 80 (2): 1–2. doi: 10.1136/annrheumdis-2020-218243
- Rojas-Marte G., Khalid M., Mukhtar O., Hashmi A.T., Waheed M.A., Ehrlich S., et al. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: A case-controlled study. QJM 2020; 113 (8): 546–50. doi: 10.1093/qjmed/hcaa206
- Colaneri M., Bogliolo L., Valsecchi P., Sacchi P., Zuccaro V., Brandolino F., et al. Tocilizumab for treatment of severe covid-19 patients: Preliminary results from smatteo covid19 registry (smacore). Microorganisms 2020; 8 (5): 695. doi: 10.3390/microorganisms8050695
- Regeneron and Sanofi Provide Update on U.S. Phase 2/3 Adaptive-Designed Trial of Kevzara® (sarilumab) in Hospitalized COVID-19 Patients | Regeneron Pharmaceuticals Inc. [Internet]. [cited 2021 Jun 3]. Available from: https://investor.regeneron.com/news-releases/news-release-details/regeneron-and-sanofi-provideupdate-us-phase-23-adaptive.
- Титова О.Н., Волчков В.А., Кузубова Н.А., Козырев А.Г., Волчкова Е.В., Крошкина И.Ю. Клинико-лабораторные и лучевые параметры, ассоциируемые с различными исходами новой коронавирусной инфекции (COVID-19) тяжелого течения с пневмонией у пациентов, получавших тоцилизумаб. Медицинский Альянс 2021; (1). Доступно по: https://med-alyans.ru/index.php/Hahn/article/view/707. Ссылка активна на 10.08.2021.
- Sciascia S., Aprà F., Baffa A., Baldovino S., Boaro D., Boero R., et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID- 19. Clin Exp Rheumatol 2020; 38 (3): 529–32.
- Salvarani C., Dolci G., Massari M., Merlo D.F., Cavuto S., et al. Tocilizumab No “Silver Bullet” in Fight Against COVID-19. JAMA Intern Med. 2020.
- Babon J.J., Lucet I.S., Murphy J.M., Nicola N.A., Varghese L.N. The molecular regulation of Janus kinase (JAK) activation. Biochem J 2014; 462 (1): 1–13. doi: 10.1042/BJ20140712
- Bousoik E., Montazeri Aliabadi H. “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8: 287. doi: 10.3389/fonc.2018.00287
- Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect 2020; 81 (2): 318–56. doi: 10.1016/j.jinf.2020.04.017
- Kalil A.C., Patterson T.F., Mehta A.K., Tomashek K.M., Wolfe C.R., Ghazaryan V., et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med 2021; 384 (9): 795–807. doi: 10.1056/NEJMoa2031994
- Cao Y., Wei J., Zou L., Jiang T., Wang G., Chen L., et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 2020; 146 (1): 137–46.e3. doi: 10.1016/j.jaci.2020.05.019
- Roschewski M., Lionakis M.S., Sharman J.P., Roswarski J., Goy A., Monticelli M.A., et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol 2020; 5 (48): eabd0110. doi: 10.1126/sciimmunol.abd0110
- Moradimajd P., Samaee H., Sedigh-Maroufi S., Kourosh-Aami M., Mohsenzadagan M. Administration of intravenous immunoglobulin in the treatment of COVID-19: A review of available evidence. J Med Virol 2021; 93: 2675–82. doi: 10.1002/jmv.26727
- Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against covid-19 and strengthen the immune system of new patients? Int J Molecular Sci 2020; 21 (7): 2272. doi: 10.3390/ijms21072272
- Samson M., Fraser W., Lebowitz D. Treatments for Primary Immune Thrombocytopenia: A Review. Cureus 2019; 11 (10): e5849. doi: 10.7759/cureus.5849
- Alhazzani W., Møller M.H., Arabi Y.M., Loeb M., Gong M.N., Fan E., et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med 2020; 48 (6): е440–69. doi: 10.1097/CCM.0000000000004363
- Huang M., Yang Y., Shang F., Zheng Y., Zhao W., Luo L., et al. Early and Critical Care in Severe Patients with COVID-19 Infection in Jiangsu Province, China: A Descriptive Study. SSRN Electron J 2020; 360 (2): 120– 8. doi: 10.1016/j.amjms.2020.05.038
- Cao W., Liu X., Bai T., Fan H., Hong K., Song H., et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis 2020; 7 (3): ofaa102. doi: 10.1093/ofid/ofaa102
- Xie Y., Cao S., Dong H., Li Q., Chen E., Zhang W., et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect 2020; 81 (2): 318–56. doi: 10.1016/j.jinf.2020.03.044
- Zhou Z.-G., Xie S.-M., Zhang J., Zheng F., Jiang D.-X., Li K.-Y., et al. Short-term moderate-dose corticosteroid plus immunoglobulin effectively reverses COVID-19 patients who have failed low-dose therapy. [Internet]. Preprints. 2020. Available from: www.preprints.org
- Shao Z., Feng Y., Zhong L., Xie Q., Lei M., Liu Z., et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunol 2020; 9 (10): е1192. doi: 10.1002/cti2.1192
- Marano G., Vaglio S., Pupella S., Facco G., Catalano L., Liumbruno G.M., et al. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus 2016; 14 (2): 152– 7. doi: 10.2450/2015.0131-15
- Pathak E.B. Convalescent plasma is ineffective for covid-19. BMJ 2020; 371: m4072. doi: 10.1136/bmj.m4072
- Simonovich V.A., Burgos Pratx L.D., Scibona P., Beruto M.V., Vallone M.G., Vázquez C., et al. A Randomized Trial of Convalescent Plasma in Covid- 19 Severe Pneumonia. N Engl J Med 2021; 384 (7): 619–29. doi: 10.1056/NEJMoa2031304
- Libster R., Pérez Marc G., Wappner D., Coviello S., Bianchi A., Braem V., et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med 2021; 384 (7): 610–8. doi: 10.1056/NEJMoa2033700
- Salazar E., Christensen P.A., Graviss E.A., Nguyen D.T., Castillo B., Chen J., et al. Treatment of Coronavirus Disease 2019 Patients with Convalescent Plasma Reveals a Signal of Significantly Decreased Mortality. Am J Pathol 2020; 190 (11): 2290–303. doi: 10.1016/j.ajpath.2020.08.001
- Khamis F., Al-Zakwani I., Al Hashmi S., Al Dowaiki S., Al Bahrani M., Pandak N., et al. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis 2020; 99: 214–8.
- Li L., Zhang W., Hu Y., Tong X., Zheng S., Yang J., et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID- 19: A Randomized Clinical Trial. JAMA 2020; 324 (5): 460–70. doi: 10.1001/jama.2020.10044
- Gharbharan A., Jordans C.C.E., Geurtsvankessel K.G., den Hollander G.J., Femke K.F.P.N., Mollema F.P.N., et al. Convalescent plasma for COVID-19: a randomized clinical trial. medRxiv. 2020. [Preprint].
- Agarwal A., Mukherjee A., Kumar G., Chatterjee P., Bhatnagar T., Malhotra P. Convalescent plasma in the management of moderate COVID-19 in India: An open-label parallel-arm phase II multicentre randomized controlled trial (PLACID Trial). BMJ 2020; 371: m3939. doi: 10.1136/bmj.m3939
- Joyner M.J., Senefeld J.W., Klassen S.A., Mills J.R., Johnson P.W., Theel E.S., et al. Effect of Convalescent Plasma on Mortality among Hospitalized Patients with COVID- 19: Initial Three-Month Experience. medRxiv Prepr Serv Heal Sci 2020; 2020.08.12.20169359. [Preprint]. doi: 10.1101/2020.08.12.20169359
- Liu S.T.H., Lin H.M., Baine I., Wajnberg A., Gumprecht J.P., Rahman F., et al. Convalescent plasma treatment of severe COVID-19: a propensity score–matched control study. Nat Med 2020; 26 (11): 1708–13. doi: 10.1038/s41591-020-1088-9
- Zhang Q., Wang Y., Qi C., Shen L., Li J. Clinical trial analysis of 2019- nCoV therapy registered in China. J Med Virol 2020; 92 (6): 540–5. doi: 10.1002/jmv.25733
- Sun Y., Dong Y., Wang L., Xie H., Li B., Chang C., et al. Characteristics and prognostic factors of disease severity in patients with COVID-19: The Beijing experience. J Autoimmun 2020; 112: 102473. doi: 10.1016/j.jaut.2020.102473
- Izcovich A., Ragusa M.A., Tortosa F., Marzio M.A.L., Agnoletti C., Bengolea A., et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One 2020; 15 (11): e0241955. doi: 10.1371/journal.pone.0241955
- Wang M., Zhu Q., Fu J., Liu L., Xiao M., Du Y. Differences of inflammatory and non-inflammatory indicators in Coronavirus disease-19 (COVID- 19) with different severity. Infect Genet Evol 2020; 85: 104511. doi: 10.1016/j.meegid.2020.104511
- Mann E.R., Menon M., Knight S.B., Konkel J.E., Jagger C., Shaw T.N., et al. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci Immunol 2020; 5 (51): eabd6197. doi: 10.1126/sciimmunol.abd6197
- Liu J., Li S., Liu J., Liang B., Wang X., Wang H., et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763. doi: 10.1016/j.ebiom.2020.102763
- Mathew D., Giles J.R., Baxter A.E., Oldridge D.A., Greenplate A.R., Wu J.E., et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020; 369 (6508): eabc8511. doi: 10.1126/science.abc8511
- Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol 2020; 11: 827. doi: 10.3389/fimmu.2020.00827
- Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol 2020; 5 (49): eabd7114. doi: 10.1126/sciimmunol.abd7114
- Chen R., Sang L., Jiang M., Yang Z., Jia N., Fu W., et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol 2020; 146 (1): 89–100. doi: 10.1016/j.jaci.2020.05.003
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497– 506. doi: 10.1016/S0140-6736(20)30183-5
- Yang Y., Shen C., Li J., Yuan J., Yang M., Wang F., et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv 20029975 [Preprint]. 2020.
- Chen L.Y.C., Hoiland R.L., Stukas S., Wellington C.L., Sekhon M.S. Confronting the controversy: Interleukin-6 and the COVID-19 cytokine storm syndrome. Eur Respir J 2020; 56 (4): 2003006. doi: 10.1183/13993003.03006-2020
- Laing A.G., Lorenc A., del Molino del Barrio I., Das A., Fish M., Monin L., et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 2020; 26 (10): 1623–35. doi: 10.1038/s41591-020-1038-6
- Yang Y., Shen C., Li J., Yuan J., Wei J., Huang F., et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 2020; 146 (1): 119–27. e4. doi: 10.1016/j.jaci.2020.04.027
- Abers M.S., Delmonte O.M., Ricotta E.E., Fintzi J., Fink D.L., Almeida de Jesus A.A., et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight 2021; 6 (1): е144455. doi: 10.1172/jci.insight.144455
- Sabaka P., Koščálová A., Straka I., Hodosy J., Lipták R., Kmotorková B., et al. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis 2021; 21 (1): 1–8. doi: 10.1186/s12879-021-05945-8
- Sun H., Guo P., Zhang L., Wang F. Serum interleukin-6 concentrations and the severity of COVID-19 pneumonia: A retrospective study at a single center in Bengbu City, Anhui Province, China, in January and February 2020. Med Sci Monit 2020; 26: е926941. doi: 10.12659/MSM.926941
- Caricchio R., Gallucci M., Dass C., Zhang X., Gallucci S., Fleece D., et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis 2021; 80 (1): 88–95. doi: 10.1136/annrheumdis-2020-218323
- Cappanera S., Palumbo M., Kwan S.H., Priante G., Martella L.A., Saraca L.M., et al. When Does the Cytokine Storm Begin in COVID-19 Patients? A Quick Score to Recognize It. J Clin Med 2021; 10 (2): 297. doi: 10.3390/jcm10020297
Дополнительные файлы
