Внутриклеточная сигнализация при феномене запрограммированной гибели нейтрофилов с появлением внеклеточных ДНК-ловушек при тромбообразовании

Обложка

Цитировать

Полный текст

Аннотация

Формирование внеклеточных ДНК-ловушек нейтрофилов (NET-оз) является важной составляющей многих патологических процессов, относящихся к областям современной гематологии, онкологии и иммунологии. Этот механизм запрограммированной клеточной смерти нейтрофилов и других лейкоцитов оказался вовлечен и в патогенез тромбозов и тромботических осложнений многих заболеваний. В данном обзоре мы рассматриваем пути внутриклеточной сигнализации, ведущие к активации нейтрофилов в условиях тромбоза и гемостаза. Несмотря на то, что биохимические реакции в клетке изучены достаточно хорошо, в NET-оз оказываются вовлечены такие специфические белки, как NADPH-оксидаза (NOX) и пептидил-аргинин деиминаза (PAD4), регуляция активности которых изучена недостаточно. Отдельно рассматриваются существующие подходы к фармакологической модуляции NET-оза.

Об авторах

А. Н. Свешникова

ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России;
ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»;
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН

Автор, ответственный за переписку.
Email: a.sveshnikova@physics.msu.ru
ORCID iD: 0000-0003-4720-7319

Свешникова Анастасия Никитична, д-р физ.-мат. наук, заведующая лабораторией клеточной биологии и трансляционной медицины ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева»

117997, Москва, ул. Саморы Машела, 1

Россия

Е. А. Адаманская

ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России;
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН

ORCID iD: 0009-0000-4828-4063

Москва

Россия

Ю.-Д. Д. Коробкина

ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН

ORCID iD: 0000-0002-2762-5460

Москва

Россия

М. А. Пантелеев

ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России;
ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»;
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН

ORCID iD: 0000-0002-8128-7757

Москва

Россия

Список литературы

  1. Palacios-Acedo A.L., Mège D., Crescence L., Dignat-George F., Dubois C., Panicot-Dubois L. Platelets, Thrombo-Inflammation, and Cancer: Collaborating With the Enemy. Front Immunol 2019, 10: 1805. doi: 10.3389/fimmu.2019.01805
  2. Thålin C., Hisada Y., Lundström S., Mackman N., Wallén H. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis. Arterioscler Thromb Vasc Biol 2019, 39 (9): 1724–38. doi: 10.1161/ATVBAHA.119.312463
  3. Адаманская Е.А., Коробкина, Ю.Д., Юшкова E.B., Свешникова А.Н. Повышенное образование ДНК-ловушек нейтрофилов и особенности их хемотаксиса в образцах крови пациентов с раком молочной железы. Тезисы докладов Международной научной конференции, посвященной 50-летию института (Республика Беларусь, Минск, 26–27 октября 2023 г.). Минск, 2023.
  4. Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen J.X., Marques M.B., Monestier M., et al. Platelets Induce Neutrophil Extracellular Traps in Transfusion-Related Acute Lung Injury. J Clin Invest 2012, 122: 2661–71. doi: 10.1172/JCI61303
  5. Golas A., Parhi P., Dimachkie Z.O., Siedlecki C.A., Vogler E.A. Surface-Energy Dependent Contact Activation of Blood Factor XII. Biomaterials 2010, 31: 1068–79. doi: 10.1016/j.biomaterials.2009.10.039
  6. Fuchs T.A., Brill A., Wagner D.D. Neutrophil Extracellular Trap (NET) Impact on Deep Vein Thrombosis. Arterioscler Thromb Vasc Biol 2012, 32: 1777–83. DOI: 10.1161/ ATVBAHA.111.242859
  7. Borregaard N. Neutrophils, from Marrow to Microbes. Immunity 2010, 33: 657–70. doi: 10.1016/j.immuni.2010.11.011
  8. Nathan C. Neutrophils and Immunity: Challenges and Opportunities. Nat Rev Immunol 2006, 6: 173–82. doi: 10.1038/nri1785
  9. Petri B., Sanz M.-J. Neutrophil Chemotaxis. Cell Tissue Res 2018, 371: 425–36. doi: 10.1007/s00441017-2776-8
  10. Cassatella M.A. The Neutrophil: An Emerging Regulator of Inflammatory and Immune Response. Karger Medical and Scientific Publishers, 2003.
  11. Sveshnikova A., Stepanyan M., Panteleev M.. Platelet Functional Responses and Signalling: The Molecular Relationship. Part 1: Responses. Syst Biol Physiol Rep 2021, 1: 20. doi: 10.52455/sbpr.01.202101014
  12. Andrews R.K., Arthur J.F., Gardiner E.E. Neutrophil Extracellular Traps (NETs) and the Role of Platelets in Infection. Thromb Haemost 2014, 112: 659–65. doi: 10.1160/TH14-05-0455
  13. Knorr D.A., Bachanova V., Verneris M.R., Miller J.S. Clinical Utility of Natural Killer Cells in Cancer Therapy and Transplantation. Semin Immunol 2014, 26: 161–72. doi: 10.1016/j.smim.2014.02.002
  14. Damascena H.L., Silveira W.A.A., Castro M.S., Fontes W. Neutrophil Activated by the Famous and Potent PMA (Phorbol Myristate Acetate). Cells 2022, 11: 2889. doi: 10.3390/cells11182889
  15. Tatsiy O., McDonald P.P. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways. Front Immunol 2018, 9: 2036. doi: 10.3389/fimmu.2018. 02036
  16. von Köckritz-Blickwede M., Winstel V. Molecular Prerequisites for Neutrophil Extracellular Trap Formation and Evasion Mechanisms of Staphylococcus Aureus. Front Immunol 2022, 13.
  17. Thiam H.R., Wong S.L., Qiu R., Kittisopikul M., Vahabikashi A., Goldman A.E., et al. NETosis Proceeds by Cytoskeleton and Endomembrane Disassembly and PAD4-Mediated Chromatin Decondensation and Nuclear Envelope Rupture. Proc Natl Acad Sci U S A 2020; 117: 7326–37. doi: 10.1073/pnas.1909546117
  18. Borregaard N., Sørensen O.E., Theilgaard-Mönch K. Neutrophil Granules: A Library of Innate Immunity Proteins. Trends Immunol 2007; 28: 340–45. doi: 10.1016/j.it.2007.06.002
  19. Boettcher M., Esser M., Trah J., Klohs S., Mokhaberi N., Wenskus J., et al. Markers of Neutrophil Activation and Extracellular Traps Formation Are Predictive of Appendicitis in Mice and Humans: A Pilot Study. Sci Rep 2020; 10: 18240. doi: 10.1038/s41598-020-74370-9
  20. Rosales C. Neutrophil: A Cell with Many Roles in Infl or Several Cell Types? Front Physiol 2018; 9.
  21. Witko-Sarsat V., Rieu P., Descamps-Latscha B., Lesavre P., Halbwachs-Mecarelli L. Neutrophils: Molecules, Functions and Pathophysiological Aspects. Lab Invest 2000; 80: 617–53. DOI: 10.1038/ labinvest.3780067
  22. Polverino E., Rosales-Mayor E., Dale G.E., Dembowsky K., Torres A. The Role of Neutrophil Elastase Inhibitors in Lung Diseases. Chest 2017; 152: 249–62. doi: 10.1016/j.chest.2017.03.056
  23. Voynow J.A., Shinbashi M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021; 11: 1065. doi: 10.3390/biom 11081065
  24. Fu Z., Akula S., Thorpe M., Hellman L. Potent and Broad but Not Unselective Cleavage of Cytokines and Chemokines by Human Neutrophil Elastase and Proteinase 3. Int J Mol Sci 2020; 21: 651. doi: 10.3390/ijms21020651
  25. Hubbard R.C., Crystal R.G. Alpha-1-Antitrypsin Augmentation Therapy for Alpha-1-Antitrypsin Deficiency. Am J Med 1988; 84: 52–62. doi: 10.1016/S00029343(88)80071-8
  26. Groutas W.C., Dou D., Alliston K.R. Neutrophil Elastase Inhibitors. Exp Opin Ther Pat 2011; 21: 339–54. doi: 10.1517/13543776.2011.551115
  27. Sun R., Xu Z., Zhu C., Chen T., Muñoz L.E., Dai L., Zhao Y. Alpha-1 Antitrypsin in Autoimmune Diseases: Roles and Therapeutic Prospects. Int Immunopharmacol 2022; 110: 109001. doi: 10.1016/j.intimp.2022.109001
  28. Козлов С.О., Кудрявцев И.В., Грудинина Н.А., Костевич В.А., Панасенко О.М., Соколов А.В., Васильев В.Б. Активированные нейтрофилы, продуцирующие HOCL, выявляющиеся при проточной цитометрии и конфокальной микроскопии с помощью целестинового синего В. Acta Biomedica Scientifica 2016; 1 (3(2)): 86–91. doi: 10.12737/article_590823a4895537.04307905
  29. Metzler K.D., Goosmann C., Lubojemska A., Zychlinsky A., Papayannopoulos V. A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Rep 2014; 8: 883–96. DOI: 10.1016/j. celrep.2014.06.044
  30. Martinod K., Witsch T., Farley K., Gallant M., Remold-O’Donnell E., Wagner D.D. Neutrophil Elastase-Deficient Mice Form Neutrophil Extracellular Traps in an Experimental Model of Deep Vein Thrombosis. J Thromb Haemost 2016; 14 (3): 551– 8. doi: 10.1111/jth.13239
  31. El-Benna J., Hurtado-Nedelec M., Marzaioli V., Marie J.-C., Gougerot-Pocidalo M.-A., Dang P.M.-C. Priming of the Neutrophil Respiratory Burst: Role in Host Defense and Inflammation. Immunol Rev 2016; 273: 180–93. doi: 10.1111/imr.12447
  32. Soehnlein O., Lindbom L., Weber C. Mechanisms Underlying Neutrophil-Mediated Monocyte Recruitment. Blood 2009; 114: 4613–23. doi: 10.1182/blood-2009-06-221630
  33. Prince L.R., Whyte M.K., Sabroe I., Parker L.C. The Role of TLRs in Neutrophil Activation. Curr Opin Pharmacol 2011; 11: 397–403. doi: 10.1016/j.coph.2011.06.007
  34. Liu X., Arfman T., Wichapong K., Reutelingsperger C.P.M., Voorberg J., Nicolaes G.A.F. PAD4 Takes Charge during Neutrophil Activation: Impact of PAD4 Mediated NET Formation on Immune‐mediated Disease. J Thromb Haemost 2021; 19: 1607–17. doi: 10.1111/jth.15313.
  35. An Z., Li J., Yu J., Wang X., Gao H., Zhang W., et al. Neutrophil Extracellular Traps Induced by IL-8 Aggravate Atherosclerosis via Activation NF-kB Signaling in Macrophages. Cell Cycle 2019; 18: 2928–38. doi: 10.1080/15384101.2019.1662678
  36. Garratt L.W. Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021; 10: 2406. doi: 10.3390/cells10092406
  37. Thompson A.A.R., Elks P.M., Marriott H.M., Eamsamarng S., Higgins K.R., Lewis A., et al. Hypoxia-Inducible Factor 2a Regulates Key Neutrophil Functions in Humans, Mice, and Zebrafi Blood 2014; 123: 366– 76. doi: 10.1182/blood-2013-05500207
  38. Yang M., Chen Q., Mei L., Wen G., An W., Zhou X., et al. Neutrophil Elastase Promotes Neointimal Hyperplasia by Targeting Toll-like Receptor 4 (TLR4) – NF-kB Signalling. Br J Pharmacol 2021; 178: 4048–68. doi: 10.1111/bph.15583
  39. Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 Channel and Mitochondrial ROS Mediate NADPH Oxidase-Independent NETosis Induced by Calcium Influx. Proc Natl Acad Sci U S A 2015; 112: 2817– 22. doi: 10.1073/pnas.1414055112
  40. Huang J., Hong W., Wan M., Zheng L. Molecular Mechanisms and Therapeutic Target of NETosis in Diseases. MedComm (2020) 2022; 3: e162. doi: 10.1002/mco2.162
  41. Liu Y.-L., Lee C.-Y., Huang Y.-N., Chen H.-Y., Liu G.-Y., Hung H.-C. Probing the Roles of Calcium-Binding Sites during the Folding of Human Peptidylarginine Deiminase 4. Sci Rep 2017; 7: 2429. doi: 10.1038/s41598-017-02677-1
  42. Arita K., Hashimoto H., Shimizu T., Nakashima K., Yamada M., Sato M. Structural Basis for Ca2+-Induced Activation of Human PAD4. Nat Struct Mol Biol 2004; 11: 777–83. doi: 10.1038/nsmb799
  43. Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A. et al. Mitochondrial Permeability Transition Pore Is Involved in Oxidative Burst and NETosis of Human Neutrophils. Biochim Biophys Acta Mol Basis Dis 2020; 1866: 165664. doi: 10.1016/j.bbadis.2020.165664
  44. Chen T., Li Y., Sun R., Hu H., Liu Y., Herrmann M., et al. Receptor-Mediated NETosis on Neutrophils. Front Immunol 2021; 12: 775267.
  45. Damgaard D., Bjørn M.E., Jensen P.Ø., Nielsen C.H. Reactive Oxygen Species Inhibit Catalytic Activity of Peptidylarginine Deiminase. J Enzyme Inhib Med Chem 2017; 32: 1203–8. doi: 10.1080/14756366.2017.1368505
  46. Damgaard D., Bjørn M.E., Steffensen M.A., Pruijn G.J.M., Nielsen C.H. Reduced Glutathione as a Physiological Co-Activator in the Activation of Peptidylarginine Deiminase. Arthritis Res Ther 2016; 18: 102. doi: 10.1186/s13075-016-1000-7
  47. Schoenwaelder S.M., Ruggeri Z.M., Westein E., Kaplan Z.S., Jackson S.P., Ashworth K.J., et al. The CXCR1/2 Ligand NAP-2 Promotes Directed Intravascular Leukocyte Migration through Platelet Thrombi. Blood 2013; 121: 4555–66. doi: 10.1182/blood-2012-09-459636
  48. Rajagopalan L., Rajarathnam K. Ligand Selectivity and Affi of Chemokine Receptor CXCR1: ROLE OF N-TERMINAL DOMAIN*. J Biol Chem 2004; 279: 30000–8. doi: 10.1074/jbc.M313883200
  49. Woulfe D., Jiang H., Mortensen R., Yang J., Brass L.F. Activation of Rap1B by Gi Family Members in Platelets. J Biol Chem 2002; 277: 23382–90. doi: 10.1074/jbc.M202212200
  50. Eckly A., Rinckel J.Y., Proamer F., Ulas N., Joshi S., Whiteheart S.W., Gachet C. Respective Contributions of Single and Compound Granule Fusion to Secretion by Activated Platelets. Blood 2016; 128: 2538– 49. doi: 10.1182/blood-2016-03705681
  51. Kannan S. Role of Protease-Activated Receptors in Neutrophil Degranulation. Med Hypotheses 2002; 59: 266–7. doi: 10.1016/s0306-9877(02)00214-1
  52. Futosi K., Fodor S., Mócsai A. Neutrophil Cell Surface Receptors and Their Intracellular Signal Transduction Pathways. Int Immunopharmacol 2013; 17: 638–50. DOI: 10.1016/j. intimp.2013.06.034
  53. Zarubin T., Han J. Activation and Signaling of the P38 MAP Kinase Pathway. Cell Res 2005; 15: 11–8. doi: 10.1038/sj.cr.7290257
  54. Anerillas C., Abdelmohsen K., Gorospe M. Regulation of Senescence Traits by MAPKs. GeroScience 2020; 42: 397–408. doi: 10.1007/s11357-020-00183-3
  55. Teijeira A., Garasa S., Ochoa M.D.C., Cirella A., Olivera I., Glez‐Vaz J., et al. Differential Interleukin‐8 Thresholds for Chemotaxis and Netosis in Human Neutrophils. Eur J Immunol 2021; 51: 2274–80. doi: 10.1002/eji.202049029
  56. Raad H., Mouawia H., Hassan H., El-Seblani M., Arabi-Derkawi R., Boussetta T., et al. The Protein Kinase A Negatively Regulates Reactive Oxygen Species Production by Phosphorylating Gp91phox/NOX2 in Human Neutrophils. Free Radic Biol Med 2020; 160: 19–27. doi: 10.1016/j.freeradbiomed.2020.07.021
  57. Chhatar S., Lal G. Role of Adrenergic Receptor Signalling in Neuroimmune Communication. Curr Res Immunol 2021; 2: 202–17. doi: 10.1016/j.crimmu.2021.11.001
  58. Mócsai A., Walzog B., Lowell C.A. Intracellular Signalling during Neutrophil Recruitment. Cardiovasc Res 2015; 107: 373–85. doi: 10.1093/cvr/cvv159
  59. Cappenberg A., Kardell M., Zarbock A. Selectin-Mediated Signaling—Shedding Light on the Regulation of Integrin Activity in Neutrophils. Cells 2022; 11: 1310. doi: 10.3390/cells11081310
  60. Канева В.Н., Мартьянов А.А., Морозова Д.С., Пантелеев М.А., Свешникова А.Н. Механизмы активации и кластеризации тромбоцитарных интегринов aIIbb3 и их роль в гетерогенности структуры тромба. Биологические мембраны 2019; 36 (1): 15–31. doi: 10.1134/S0233475519010031
  61. Moroi A.J., Watson S.P. Impact of the PI3-Kinase/Akt Pathway on ITAM and hemITAM Receptors: Haemostasis, Platelet Activation and Antithrombotic Therapy. Biochem Pharmacol 2015; 94: 186–94. doi: 10.1016/j.bcp.2015.02.004
  62. Lu Y.-C., Yeh W.-C., Ohashi P.S. LPS/ TLR4 Signal Transduction Pathway. Cytokine 2008; 42: 145–51. doi: 10.1016/j.cyto.2008.01.006
  63. Vogel S., Bodenstein R., Chen Q., Feil S., Feil R., Rheinlaender J., et al. Platelet-Derived HMGB1 Is a Critical Mediator of Thrombosis. J Clin Invest 2015; 125 (12): 4638–54. doi: 10.1172/JCI81660DS1
  64. Lin H.-R., Wu Y.-H., Yen W.-C., Yang C.-M., Chiu D.T.-Y. Diminished COX-2/PGE2-Mediated Antiviral Response Due to Impaired NOX/ MAPK Signaling in G6PD-Knockdown Lung Epithelial Cells. PLoS One 2016; 11: e0153462. doi: 10.1371/journal.pone.0153462
  65. Мартьянов А.А., Балабин Ф.А., Майоров А.С., Шамова Е.В., Пантелеев М.А., Свешникова А.Н. Компьютерное моделирование внутриклеточной сигнализации при активации тромбоцитов крови фукоиданом. Биологические мембраны 2018; 35: 364–75. doi: 10.1134/S0233475518040102.
  66. Taylor P.R., Roy S., Leal S.M., Sun Y., Howell S.J., Cobb B.A., et al. Activation of Neutrophils by Autocrine IL-17A–IL-17RC Interactions during Fungal Infection Is Regulated by IL-6, IL-23, RORgt and Dectin-2. Nat Immunol 2014; 15: 143–51. doi: 10.1038/ni.2797
  67. Bao Y., Ledderose C., Seier T., Graf A.F., Brix B., Chong E., Junger W.G. Mitochondria Regulate Neutrophil Activation by Generating ATP for Autocrine Purinergic Signaling. J Biol Chem 2014; 289: 26794– 803. doi: 10.1074/jbc.M114.572495
  68. Fletcher D.A., Mullins R.D. Cell Mechanics and the Cytoskeleton. Nature 2010; 463: 485–92. doi: 10.1038/nature08908
  69. Kenny E.F., Herzig A., Krüger R., Muth A., Mondal S., Thompson P.R., et al. Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways. Elife 2017; 6: e24437. doi: 10.7554/eLife.24437
  70. Metzler K.D., Fuchs T.A., Nauseef W.M., Reumaux D., Roesler J., Schulze I., et al. Myeloperoxidase Is Required for Neutrophil Extracellular Trap Formation: Implications for Innate Immunity. Blood 2011; 117: 953–9. doi: 10.1182/blood-201006-290171
  71. Neubert E., Meyer D., Rocca F., Günay G., Kwaczala-Tessmann A., Grandke J., et al. Chromatin Swelling Drives Neutrophil Extracellular Trap Release. Nat Commun 2018; 9: 3767. doi: 10.1038/s41467-01806263-5
  72. Chatfi d S.M., Grebe K., Whitehead L.W., Rogers K.L., Nebl T., Murphy J.M., Wicks I.P. Monosodium Urate Crystals Generate Nuclease-Resistant Neutrophil Extracellular Traps via a Distinct Molecular Pathway. J Immunol 2018; 200: 1802–16. doi: 10.4049/jimmunol.1701382
  73. Sprenkeler E.G.G., Tool A.T.J., Henriet S.S.V., van Bruggen R., Kuijpers T.W. Formation of Neutrophil Extracellular Traps Requires Actin Cytoskeleton Rearrangements. Blood 2022; 139: 3166–80. doi: 10.1182/blood.2021013565
  74. Neubert E., Meyer D., Kruss S., Erpenbeck L. The Power from within – Understanding the Driving Forces of Neutrophil Extracellular Trap Formation. J Cell Sci 2020; 133: jcs241075. doi: 10.1242/jcs.241075
  75. Ogino T., Packer L., Maguire J.J. Neutrophil Antioxidant Capacity During the Respiratory Burst: Loss of Glutathione Induced by Chloramines. Free Radic Biol Med 1997; 23: 445–52. doi: 10.1016/S08915849(97)00115-9
  76. Reshetnikov V., Hahn J., Maueröder C., Czegley C., Munoz L.E., Herrmann M., et al. Chemical Tools for Targeted Amplifi of Reactive Oxygen Species in Neutrophils. Front Immunol 2018; 9: 1827. doi: 10.3389/fimmu.2018.01827
  77. Chamardani T.M., Amiritavassoli S. Inhibition of NETosis for Treatment Purposes: Friend or Foe? Mol Cell Biochem 2022; 477: 673–688. doi: 10.1007/s11010-021-04315-x
  78. Hallberg L.A.E., Barlous K., Hawkins C.L. Antioxidant Strategies to Modulate NETosis and the Release of Neutrophil Extracellular Traps during Chronic Inflammation. Antioxidants 2023; 12: 478. doi: 10.3390/antiox12020478
  79. Papayannopoulos V. Neutrophil Extracellular Traps in Immunity and Disease. Nat Rev Immunol 2018; 18: 134–47. doi: 10.1038/nri.2017.105
  80. Stevens M.P., Galyov E.E. Exploitation of Host Cells by Burkholderia Pseudomallei. Int J Med Microbiol 2004; 293: 549–55. doi: 10.1078/14384221-00292
  81. Vong L., Lorentz R.J., Assa A., Glogauer M., Sherman P.M. Probiotic Lactobacillus Rhamnosus Inhibits the Formation of Neutrophil Extracellular Traps. J Immunol 2014; 192: 1870–7. doi: 10.4049/jimmunol.1302286
  82. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., et al. Novel Cell Death Program Leads to Neutrophil Extracellular Traps. J Cell Biol 2007; 176: 231–41. doi: 10.1083/jcb.200606027
  83. Azzouz D., Palaniyar N. ApoNETosis: Discovery of a Novel Form of Neutrophil Death with Concomitant Apoptosis and NETosis. Cell Death Dis 2018; 9: 1–3. doi: 10.1038/s41419-018-0846-9
  84. Khan M.A., Palaniyar N. Transcriptional Firing Helps to Drive NETosis. Sci Rep 2017; 7: 41749. doi: 10.1038/srep41749

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Свешникова А.Н., Адаманская Е.А., Коробкина Ю.Д., Пантелеев М.А., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.