Key genetic disorders in the pathogenesis of neuroblastoma
- Authors: Chernysheva O.O.1, Drui A.E.2, Kachanov D.Y.2, Shamanskaya T.V.2
-
Affiliations:
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry of Ministry of Healthcare of the Russian Federation
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
- Issue: Vol 20, No 4 (2021)
- Pages: 178-184
- Section: LITERATURE REVIEW
- Submitted: 22.12.2021
- Accepted: 22.12.2021
- Published: 22.12.2021
- URL: https://hemoncim.com/jour/article/view/572
- DOI: https://doi.org/10.24287/1726-1708-2021-20-4-178-184
- ID: 572
Cite item
Full Text
Abstract
Neuroblastoma (NB) is a malignant neoplasm of the sympathetic nervous system of embryonic origin, consisting of undifferentiated neuroectodermal cells of the neural crest.In the structure of the incidence of malignant neoplasms in patients under one year of age, NB is the most common tumor. At the same time, mortality of this disease ranks third, behind leukemias and tumors of the central nervous system, and amounts to 13% in the structure of child mortalityfrom malignant tumors in developed countries. The stratification of patients to the risk groups and the subsequent determination of treatment tactics depends on several prognostic factors, including genetic aberrations identified in tumor cells. Moreover, processes such as spontaneous regression and transformation into benign tumors are due to the genetic characteristics of NB. Thus, the study of genetic disorders underlying the pathogenesis of NB is necessary for adequate subdivision of patients into risk groups and developing of new methods of treatment.
About the authors
O. O. Chernysheva
A.I. Yevdokimov Moscow State University of Medicine and Dentistry of Ministry of Healthcare of the Russian Federation
Author for correspondence.
Email: chernishevaoo@mail.ru
ORCID iD: 0000-0003-4712-1240
a 5th year student at the Faculty of Medicine,
Delegatskaya St. 20 bldg. 1, Moscow 127473
Russian FederationA. E. Drui
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
ORCID iD: 0000-0003-1308-8622
Moscow
Russian FederationD. Yu. Kachanov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
ORCID iD: 0000-0002-3704-8783
Moscow
Russian FederationT. V. Shamanskaya
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
ORCID iD: 0000-0002-3767-4477
Moscow
Russian FederationReferences
- Cheung N.K., Dyer M.A. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 2013; 13 (6): 397– 411. doi: 10.1038/nrc3526
- Gurney J.G., Ross J.A., Wall D.A., Bleyer W.A., Severson R.K., Robison L.L. Infant cancer in the U.S.: histology-specific incidence and trends, 1973 to 1992. J Pediatr Hematol Oncol 1997; 19 (5): 428–32. doi: 10.1097/00043426-199709000-00004
- Louis C.U., Shohet J.M. Neuroblastoma: Molecular Pathogenesis and Therapy. Ann Rev Med 2015; 66 (1): 49–63. doi: 10.1146/annurevmed-011514-023121
- Hero B., Simon T., Spitz R., Ernestus K., Gnekow A.K., ScheelWalter H.G., et al. Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J Clin Oncol 2008; 26 (9): 1504–10. doi: 10.1200/JCO.2007.12.3349
- Strother D.R., London W.B., Schmidt M.L., Brodeur G.M., Shimada H., Thorner P., et al. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: results of Children’s Oncology Group study P9641. J Clin Oncol 2012; 30 (15): 1842–8. doi: 10.1200/JCO.2011.37.9990
- Twist C.J., Schmidt M.L., Naranjo A., London W.B., Tenney S.C., Marachelian A., et al. Maintaining Outstanding Outcomes Using Response- and Biology-Based Therapy for Intermediate-Risk Neuroblastoma: A Report From the Children’s Oncology Group Study ANBL0531. J Clin Oncol 2019; 37 (34): 3243–55. doi: 10.1200/JCO.19.00919
- Kachanov D., Shamanskaya T., Andreev E., Talypov S., Khismatullina R., Shevtsov D., et al. Treatment of High-Risk Neuroblastoma: Experience of Russian Federal Centers. 48th Congress of the International Society of Paediatric Oncology (SIOP). 19–22 October, 2016. Dublin, Ireland; 2016. Pediatric Blood Cancer. V. 63. Issue Supplement S3. S. 197.
- Pinto N.R., Applebaum M.A., Volchenboum S.L., Matthay K.K., London W.B., Ambros P.F., et al. Advances in Risk Classification and Treatment Strategies for Neuroblastoma. J Clin Oncol 2015; 33 (27): 3008–17. doi: 10.1200/JCO.2014.59.4648
- Nakagawara A., Li Y., Izumi H., Muramori K., Inada H., Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48 (3): 214–41. doi: 10.1093/jjco/hyx176
- Ryan A.L., Akinkuotu A., Pierro A., Morgenstern D.A. The Role of Surgery in High-risk Neuroblastoma. J Pediatr Hematol Oncol 2020; 42 (1): 1–7. doi: 10.1097/MPH.0000000000001607
- Zafar A., Wang W., Liu G., Wang X., Xian W., McKeon F., et al. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2021; 41 (2): 961–1021. doi: 10.1002/med.21750
- Brodeur G.M., Bagatell R. Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol 2014; 11 (12): 704–13. doi: 10.1038/nrclinonc.2014.168
- Brodeur G.M. Spontaneous regression of neuroblastoma. Cell Tissue Res 2018; 372 (2): 227–86. doi: 10.1007/s00441-017-2761-2
- Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., et al. Neuroblastoma. Nat Rev Dis Prim 2016; 2: 1–21. doi: 10.1038/nrdp.2016.78
- Janoueix-Lerosey I., Schleiermacher G., Michels E., Mosseri V., Ribeiro A., Lequin D., et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 2009; 27 (7): 1026–33. doi: 10.1200/JCO.2008.16.0630
- Capasso M., Diskin S.J. Genetics and Genomics of Neuroblastoma. Cancer Treat Res 2010; 155: 65–84. doi: 10.1007/978-1-4419-6033-7_4
- Качанов Д.Ю., Шаманская Т.В., Шевцов Д.В., Панкратьева Л.Л., Муфтахова Г.М., Телешова М.В. и др. Генетическая предрасположенность к нейробластоме у детей: собственные данные и обзор литературы. Онкопедиатрия 2016; 3 (4): 277–87.
- Bishara J., Keens T.G., Perez I.A. The genetics of congenital central hypoventilation syndrome: Clinical implications. Appl Clin Genet 2018; 11: 135–44. doi: 10.2147/TACG. S140629
- Klein M., Varga I. Hirschsprung’s disease – recent understanding of embryonic aspects, etiopathogenesis and future treatment avenues. Medicina (Kaunas) 2020; 56 (11): 1–13. doi: 10.3390/medicina56110611
- Fetahu I.S., Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev 2021; 40 (1): 173–89. doi: 10.1007/s10555-020-09946-y
- Van Den Eynden J., Umapathy G., Ashouri A., Cervantes-Madrid D., Szydzik J., Ruuth K., et al. Phosphoproteome and gene expression profiling of ALK inhibition in neuroblastoma cell lines reveals conserved oncogenic pathways. Sci Signal 2018; 11 (557): 1–16. doi: 10.1126/scisignal.aar5680
- Trigg R.M., Turner S.D. ALK in neuroblastoma: Biological and therapeutic implications. Cancers (Basel) 2018; 10 (4): 1–16. doi: 10.3390/cancers10040113
- Hallberg B., Palmer R.H. The role of the ALK receptor in cancer biology. Ann Oncol 2016; 27 Suppl 3: iii4–15. doi: 10.1093/annonc/mdw301
- Андреева Н.А., Друй А.Е., Шаманская Т.В., Качанов Д.Ю., Варфоломеева С.Р. ALK и нейробластома: от молекулярной генетики до клиники. Российский журнал детской гематологии и онкологии 2019; 6 (2): 54–60. doi: 10.21682/2311-1276-2019-6-2-54-60
- El-Shazly S.S., Hassan N.M., Abdellateif M.S., El Taweel M.A., Abd-Elwahab N., Ebeid E.N. The role of b-catenin and paired-like homeobox 2B (PHOX2B) expression in neuroblastoma patients; predictive and prognostic value. Exp Mol Pathol 2019; 110: 104272. doi: 10.1016/j.yexmp.2019.104272
- Rybinski B., Wolinsky T., Brohl A., Moerdler S., Reed D.R., Ewart M., et al. Multifocal primary neuroblastoma tumor heterogeneity in siblings with co-occurring PHOX2B and NF1 genetic aberrations. Genes Chromosom Cancer 2020; 59 (2): 119–24. doi: 10.1002/gcc.22809
- Macarthur I.C., Bei Y., Garcia H.D., Ortiz M.V., Toedling J., Klironomos F., et al. Prohibitin promotes dedifferentiation and is a potential therapeutic target in neuroblastoma. JCI Insight 2019; 4 (10): 1–16. doi: 10.1172/jci.insight.127130
- Decaesteker B., Denecker G., Van Neste C., Dolman E.M., Van Loocke W., Gartlgruber M., et al. TBX2 is a neuroblastoma core regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets. Nat Commun 2018; 9 (1): 48–66. doi: 10.1038/s41467- 018-06699-9
- Cammarata-Scalisi F., Avendaño A., Stock F., Callea M., Sparago A., Ricciod A. Beckwith–Wiedemann syndrome. Clinical and etiopathogenic aspects of a model genomic imprinting entity. Arch Argent Pediatr 2018; 116 (5): 368–73. doi: 10.5546/aap.2018.eng.368
- Harris J.R., Fahrner J.A. Disrupted epigenetics in the Sotos syndrome neurobehavioral phenotype. Curr Opin Psychiatry 2019; 32 (2): 55–9. doi: 10.1097/YCO.0000000000000481
- Jafry M., Sidbury R. RASopathies. Clin Dermatol 2020; 38 (4): 455–61. doi: 10.1016/j.clindermatol.2020.03.010
- Gross A.M., Frone M., Gripp K.W., Gelb B.D., Schoyer L., Schill L., et al. Advancing RAS/RASopathy therapies: An NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Am J Med Genet Part A 2020; 182 (4): 866–76. doi: 10.1002/ajmg.a.61485
- Yart A., Edouard T. Noonan syndrome: An update on growth and development. Curr Opin Endocrinol Diabetes Obes 2018; 25 (1): 67–73. doi: 10.1097/MED.0000000000000380
- Gripp K.W., Morse L.A., Axelrad M., Chatfield K.C., Chidekel A., Dobyns W., et al. Costello syndrome: Clinical phenotype, genotype, and management guidelines. Am J Med Genet Part A 2019; 179 (9): 1725–44. doi: 10.1002/ajmg.a.61270
- Mlakar V., Morel E., Mlakar S.J., Ansari M., Gumy-pause F. A review of the biological and clinical implications of RAS–MAPK pathway alterations in neuroblastoma. J Exp Clin Cancer Res 2021; 40 (1): 189. doi: 10.1186/s13046-021-01967-x
- Lopez-Delisle L., Pierre-Eugène C., Louis-Brennetot C., Surdez D., Raynal V., Baulande S., et al. Activated ALK signals through the ERK–ETV5– RET pathway to drive neuroblastoma oncogenesis. Oncogene 2018; 37 (11): 1417–29. doi: 10.1038/s41388-017-0039-5
- Higashi M., Sakai K., Fumino S., Aoi S., Furukawa T., Tajiri T. The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development. Surg Today 2019; 49 (9): 721–7. doi: 10.1007/s00595-019-01790-0
- Suenaga Y., Islam S.M., Alagu J., Kaneko Y., Kato M., Tanaka Y., et al. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3b resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet 2014; 10 (1): e1003996. doi: 10.1371/journal.pgen.1003996
- Yuan X., Larsson C., Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 2019; 38 (34): 6172–83. doi: 10.1038/s41388-019-0872-9
- Ackermann S., Cartolano M., Hero B., Welte A., Kahlert Y., Roderwieser A., et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018; 362 (6419): 1165–70. doi: 10.1126/science.aat6768
- Huang M., Zeki J., Sumarsono N., Coles G.L., Taylor J.S., Danzer E., et al. Epigenetic targeting of TERT-associated gene expression signature in human neuroblastoma with TERT overexpression. Cancer Res 2020; 80 (5): 1024–35. doi: 10.1158/0008-5472.CAN-19-2560
- Pestana A., Vinagre J., Sobrinho-Simões M., Soares P. TERT biology and function in cancer: Beyond immortalisation. J Mol Endocrinol 2017; 58 (2): 129–46. doi: 10.1530/JME-16-0195
- Cheung N.-K.V., Zhang J., Lu C., Parker M., Bahrami A., Tickoo S.K., et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 2012; 307 (10): 1062–71. DOI: 10.1001/ jama.2012.228
- Zeineldin M., Federico S., Chen X., Fan Y., Xu B., Stewart E., et al. MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nat Commun 2020; 11 (1): 1–20. doi: 10.1038/s41467-020-14682-6
- Angelina C., Tan I.S.Y., Choo Z., Lee O.Z.J., Pervaiz S., Chen Z.X. KIF1Bb increases ROS to mediate apoptosis and reinforces its protein expression through O2- In a positive feedback mechanism in neuroblastoma. Sci Rep 2017; 7 (1): 1–10. doi: 10.1038/s41598-017-17192-6
- García-López J., Wallace K., Otero J.H., Olsen R., Wang Y.-D., Finkelstein D., et al. Large 1p36 Deletions Affecting Arid1a Locus Facilitate Mycn-Driven Oncogenesis in Neuroblastoma. Cell Rep 2020; 30 (2): 454–64.e5. doi: 10.1016/j.celrep.2019.12.048
Supplementary files
