Experience in manufacturing a haploidentical biomedical cell product enriched with regulatory T-lymphocytes
- Authors: Vedmedskaia V.A.1, Pershin D.E.1, Fadeeva M.S.1, Sozonova T.A.1, Malakhova E.A.1, Kulakovskaya E.A.1, Lodoeva O.B.1, Musaeva E.Y.1, Muzalevskiy Y.O.1, Kazachenok A.S.1, Osipova D.S.1, Badrin E.A.1, Belchikov V.E.1, Melkova A.K.1, Shelihova L.N.1, Balashov D.N.1, Maschan M.A.1
-
Affiliations:
- The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
- Issue: Vol 23, No 2 (2024)
- Pages: 48-59
- Section: ORIGINAL ARTICLES
- Submitted: 25.03.2024
- Accepted: 08.04.2024
- Published: 08.07.2025
- URL: https://hemoncim.com/jour/article/view/833
- DOI: https://doi.org/10.24287/1726-1708-2024-23-2-48-59
- ID: 833
Cite item
Full Text
Abstract
Graft-versus-host disease (GVHD) remains the main life-threatening immunologic complication of hematopoietic stem cell transplantation. Despite modern pharmacological approaches for preventing and treating GVHD, there remains a need for new approaches to cure GVHD. Currently, more and more clinical experience is emerging globally in the field of using regulatory T-cell (Treg) therapies for the treatment of refractory GVHD. Manufacturing cell products for Treg therapies has a wide range of protocol variations. We have developed an approach of Treg manufacturing for cell therapy and present data from our experience in manufacturing a haploidentical Treg cell product by combining CD25+ immunomagnetic selection with closed system flowbased cell sorting methods. The study was approved by the Independent Ethics Committee and the Scientific Council of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology. The study describes the processes of producing 9 Treg cell products. According to the manufacturing protocol described here, it is possible to obtain a cell product that meets the quality control requirements necessary for approval for clinical use. Quality control includes the assessment of the cell composition, viability, and microbiological safety of the product, and is performed at all major stages of production. The final cell product is characterized by consistently high levels of FoxP3-expressing Treg (median: 98%), with a median cell viability of 99.1%, and has a high potential for functional efficacy. Thus, the protocol for producing Treg cell products by combining CD25+ immunomagnetic selection with flow cytometry-based cell sorting methods can be used for the clinical treatment of GVHD.
About the authors
V. A. Vedmedskaia
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: viktoria.zubachenko@dgoi.ru
ORCID iD: 0000-0001-7247-4844
SPIN-code: 7313-8498
Victoria A. Vedmedskaya, a junior researcher at the Laboratory of Transplantation Immunology and Immunotherapy of Hemoblastoses
1 Samory Mashela St., Moscow 117997, Russia
Russian FederationD. E. Pershin
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: dimprsh@icloud.com
ORCID iD: 0000-0002-6148-7209
Moscow
Russian FederationM. S. Fadeeva
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: mailgram@inbox.ru
ORCID iD: 0000-0002-6553-2505
Moscow
Russian FederationT. A. Sozonova
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: tania_heurly@mail.ru
ORCID iD: 0009-0004-0057-2727
Moscow
Russian FederationE. A. Malakhova
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: mallahovka@yandex.ru
ORCID iD: 0000-0002-7334-0706
Moscow
Russian FederationE. A. Kulakovskaya
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: alenakulakovskaya@gmail.com
ORCID iD: 0000-0002-9639-2779
Moscow
Russian FederationO. B. Lodoeva
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: lodoeva.oyuna@gmail.com
ORCID iD: 0000-0002-2874-0014
Moscow
Russian FederationE. Ya. Musaeva
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: e.m.69777@gmail.com
ORCID iD: 0000-0003-0581-9472
Moscow
Russian FederationYa. O. Muzalevskiy
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: fdg99@mail.ru
ORCID iD: 0000-0003-3513-8299
Moscow
Russian FederationA. S. Kazachenok
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: alexeykazachenok@gmail.com
ORCID iD: 0000-0003-0497-9175
Moscow
Russian FederationD. S. Osipova
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: d_ossipova@mail.ru
ORCID iD: 0000-0002-9968-9332
Moscow
Russian FederationE. A. Badrin
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: evgeny.badrin@fccho-moscow.ru
ORCID iD: 0000-0002-8678-9705
Moscow
Russian FederationV. E. Belchikov
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: vladbelchikov@mail.ru
ORCID iD: 0009-0001-7491-6906
Moscow
Russian FederationA. K. Melkova
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: a.melkova@fccho-moscow.ru
ORCID iD: 0009-0000-3801-0931
Moscow
Russian FederationL. N. Shelihova
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: lshelihova@gmail.com
ORCID iD: 0000-0003-0520-5630
Moscow
Russian FederationD. N. Balashov
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Author for correspondence.
Email: bala8@yandex.ru
ORCID iD: 0000-0003-2689-0569
Moscow
Russian FederationM. A. Maschan
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Email: mmaschan@yandex.ru
ORCID iD: 0000-0003-1735-0093
Moscow
Russian FederationReferences
- MacDonald K.P.A., Hill G.R., Blazar B.R. Chronic graft-versushost disease: biological insights from preclinical and clinical studies. Blood 2017; 129: 13–21. doi: 10.1182/blood-2016-06-686618
- Martin P.J., Counts G.W., Appelbaum F.R., Lee S.J., Sanders J.E., Deeg H.J., et al. Life Expectancy in Patients Surviving More Than 5 Years After Hematopoietic Cell Transplantation. J Clin Oncol 2010; 28: 1011– 6. doi: 10.1200/JCO.2009.25.6693
- Wingard J.R., Majhail N.S., Brazauskas R., Wang Z., Sobocinski K.A., Jacobsohn D., et al. Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J Clin Oncol 2011; 29: 2230–9. doi: 10.1200/JCO.2010.33.7212
- Ferrara J.L., Levine J.E., Reddy P., Holler E. Graft-versus-host disease. Lancet 2009; 373: 1550–61. doi: 10.1016/S0140-6736(09)60237-3
- Magenau J., Runaas L., Reddy P. Advances in understanding the pathogenesis of graft‐versus‐host disease. Br J Haematol 2016; 173: 190–205. doi: 10.1111/bjh.13959
- Ikegawa S., Matsuoka K. Harnessing Treg Homeostasis to Optimize Posttransplant Immunity: Current Concepts and Future Perspectives. Front Immunol 2021; 12: 713358. doi: 10.3389/fimmu.2021.713358
- Guo W., Su X., Wang M., Han M., Feng X., Jiang E. Regulatory T Cells in GVHD Therapy. Front Immunol 2021; 12: 697854. doi: 10.3389/fimmu.2021.697854
- Del Papa B., Ruggeri L., Urbani E., Baldoni S., Cecchini D., Zei T., et al. Clinical-Grade–Expanded Regulatory T Cells Prevent Graft-versus-Host Disease While Allowing a Powerful T Cell–Dependent Graft-versus-Leukemia Effect in Murine Models. Biol Blood Marrow Transplant 2017; 23: 1847–51. doi: 10.1016/j.bbmt.2017.07.009
- Taylor P.A., Noelle R.J., Blazar B.R. Cd4+ Cd25+ Immune Regulatory Cells Are Required for Induction of Tolerance to Alloantigen via Costimulatory Blockade. J Exp Med 2001; 193: 1311–8. DOI: 10.1084/ jem.193.11.1311
- Hara M., Kingsley C.I., Niimi M., Read S., Turvey S.E., Bushell A.R., et al. IL-10 Is Required for Regulatory T Cells to Mediate Tolerance to Alloantigens In Vivo. J Immunol 2001;166: 3789–96. doi: 10.4049/jimmunol.166.6.3789
- Lederer K., Maillard I. New mechanisms of GVHD suppression by Tregs. Blood 2023; 141: 1655–7. doi: 10.1182/blood.2022019396
- Wood K.J., Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199–210. doi: 10.1038/nri1027
- Taylor P.A., Lees C.J., Blazar B.R. The infusion of ex vivo activated and expanded CD4+ CD25+ immune regulatory cells inhibits graft-versushost disease lethality. Blood 2002; 99: 3493–9. doi: 10.1182/blood. V99.10.3493
- Hippen K.L., Merkel S.C., Schirm D.K., Nelson C., Tennis N.C., Riley J.L., et al. Generation and Large-Scale Expansion of Human Inducible Regulatory T Cells That Suppress Graft-Versus-Host Disease. Am J Transplant 2011; 11: 1148–57. doi: 10.1111/j.1600-6143.2011.03558.x
- Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–64.
- Shevyrev D., Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol 2020; 10: 3100. doi: 10.3389/fimmu.2019.03100
- Polansky J.K., Kretschmer K., Freyer J., Floess S., Garbe A., Baron U., et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol 2008; 38: 1654–63. doi: 10.1002/eji.200838105
- Lal G., Zhang N., van der Touw W., Ding Y., Ju W., Bottinger E.P., et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation1. J Immunol 2009; 182 (1): 259–73. doi: 10.4049/jimmunol.182.1.259
- Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009; 30: 899–911. doi: 10.1016/j.immuni.2009.03.019
- Gratz I.K., Rosenblum M.D., Maurano M.M., Paw J.S., Truong H.-A., Marshak-Rothstein A., et al. Cutting Edge: Self-Antigen Controls the Balance between Effector and Regulatory T Cells in Peripheral Tissues. J Immunol 2014; 192: 1351–5. doi: 10.4049/jimmunol.1301777
- Rosenblum M.D., Way S.S., Abbas A.K. Regulatory T cell mem ory. Nat Rev Immunol 2016; 16: 90–101. doi: 10.1038/nri.2015.1
- Trzonkowski P., Bieniaszewska M., Juścińska J., Dobyszuk A., Krzystyniak A., Marek N., et al. First-inman clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127− T regulatory cells. Clin Immunol 2009; 133: 22–6. doi: 10.1016/j.clim.2009.06.001
- Landwehr-Kenzel S., MüllerJensen L., Kuehl J.-S., Abouel-Enein M., Hoffmann H., Muench S., et al. Adoptive transfer of ex vivo expanded regulatory T cells improves immune cell engraftment and therapy-refractory chronic GvHD. Mol Ther 2022; 30: 2298–314. doi: 10.1016/j.ymthe.2022.02.025
- Amini L., Kaeda J., Fritsche E., Roemhild A., Kaiser D., Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10: 1081644. DOI: 10.3389/ fcell.2022.1081644
- MacMillan M.L., Hippen K.L., McKenna D.H., Kadidlo D., Sumstad D., DeFor T.E. First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv 2021; 5 (5): 1425–36. doi: 10.1182/bloodadvances.2020003219
- Beres A.J., Drobyski W.R. The Role of Regulatory T Cells in the Biology of Graft Versus Host Disease. Front Immunol 2013; 4: 163. doi: 10.3389/fimmu.2013.00163
- MacDonald K.N., Piret J.M., Levings M.K. Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol 2019; 197: 52–63. doi: 10.1111/cei.13297
- Irvine D.J., Maus M.V., Mooney D.J., Wong W.W. The Future of Engineered Immune Cell Therapies. Science 2022; 378: 853–8. doi: 10.1126/science.abq6990
- Jarvis L.B., Rainbow D.B., Coppard V., Howlett S.K., Georgieva Z., Davies J.L., et al. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun Biol 2021; 4: 1186. doi: 10.1038/s42003-021-02721-x
- Puckrin R., Chi Fung Kwan A., Blosser N., Leyshon C., Duggan P., Daly A. Corticosteroids as graftversus-host disease prophylaxis for allogeneic hematopoietic cell transplant recipients with calcineurin inhibitor intolerance. Cytotherapy 2023; 25 (10): 1101–6. doi: 10.1016/j.jcyt.2023.05.010
- Gooptu M., Antin J.H. GVHD Prophylaxis 2020. Front Immunol 2021; 12: 605726. DOI: 10.3389/ fimmu.2021.605726
- Peters J.H., Preijers F.W., Woestenenk R., Hilbrands L.B., Koenen H.J.P.M., Joosten I. Clinical Grade Treg: GMP Isolation, Improvement of Purity by CD127pos Depletion, Treg Expansion, and Treg Cryopreservation. PLoS One 2008; 3 (9): e3161. doi: 10.1371/journal. pone.0003161
- Seay H.R., Putnam A.L., Cserny J., Posgai A.L., Rosenau E.H., Wingard J.R., et al. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy. Mol Ther Methods Clin Dev 2017; 4: 178–91. doi: 10.1016/j.omtm.2016.12.003
- Doglio M., Crossland R.E., Alho A.C., Penack O., Dickinson A.M., Stary G., et al. Cell-based therapy in prophylaxis and treatment of chronic graftversus-host disease. Front Immunol 2022; 13: 1045168. DOI: 10.3389/ fimmu.2022.1045168
- Chandran S., Tang Q., Sarwal M., Laszik Z.G., Putnam A.L., Lee K., et al. Polyclonal Regulatory T Cell Therapy for Control of Inflammation in Kidney Transplants. Am J Transplant 2017; 17: 2945–54. doi: 10.1111/ajt.14415
- Di Ianni M., Falzetti F., Carotti A., Terenzi A., Castellino F., Bonifacio E. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011; 117 (14): 3921–8. doi: 10.1182/blood-2010-10-311894
- Edinger M., Hoffmann P. Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr Opin Immunol 2011; 23: 679–84. doi: 10.1016/j.coi.2011.06.006
- Gavin M.A., Torgerson T.R., Houston E., DeRoos P., Ho W.Y., Stray-Pedersen A., et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A 2006; 103 (17): 6659–64. doi: 10.1073/pnas.0509484103
- Roncador G., Brown P.J., Maestre L., Hue S., Martínez-Torrecuadrada J.L., Ling K.-L., et al. Analysis of FOXP3 protein expression in human CD4+ CD25+ regulatory T cells at the single‐cell level. Eur J Immunol 2005; 35 (6): 1681–91. doi: 10.1002/eji.200526189
- Voss K., Lake C., Luthers C.R., Lott N.M., Dorjbal B., Arjunaraja S., et al. FOXP3 protects conventional human T cells from premature restimulation-induced cell death. Cell Mol Immunol 2021; 18 (1): 194–205. doi: 10.1038/s41423-019-0316-z
- Hoffmann P., Eder R., Boeld T.J., Doser K., Piseshka B., Andreesen R., Edinger M. Only the CD45RA+ subpopulation of CD4+ CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 2006; 108 (13): 4260–7. doi: 10.1182/blood-2006-06-027409
- Bader C.S., Pavlova A., Lowsky R., Muffly L.S., Shiraz P., Arai S., et al. Single-center randomized trial of T-reg graft alone vs T-reg graft plus tacrolimus for the prevention of acute GVHD. Blood Adv 2024; 8: 1105–15. doi: 10.1182/bloodadvances.2023011625
- Amini L., Wagner D.L., Rössler U., Zarrinrad G., Wagner L.F., Vollmer T., et al. CRISPR-Cas9-Edited Tacrolimus-Resistant Antiviral T Cells for Advanced Adoptive Immunotherapy in Transplant Recipients. Mol Ther 2021; 29: 32–46. doi: 10.1016/j.ymthe.2020.09.011
- Peter L., Wendering D.J., Schlickeiser S., Hoffmann H., Noster R., Wagner D.L., et al. Tacrolimus-resistant SARS-CoV-2-specific T cell products to prevent and treat severe COVID-19 in immunosuppressed patients. Mol Ther Methods Clin Dev 2022; 25: 52–73. doi: 10.1016/j.omtm.2022.02.012
- Koreth J., Matsuoka K.-ichi, Kim H.T., McDonough S.M., Bindra B., Alyea E.P. 3rd, et al. Interleukin-2 and Regulatory T Cells in Graft-versusHost Disease. N Engl J Med 2011; 365 (22): 2055–66. doi: 10.1056/NEJMoa1108188
Supplementary files
