Возможные механизмы созревания нейрогенных опухолей
- Авторы: Зверев И.А.1,2, Друй А.Е.2,3
-
Учреждения:
- ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
- ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
- ГАУЗ CO «Институт медицинских клеточных технологий»
- Выпуск: Том 23, № 3 (2024)
- Страницы: 176-197
- Раздел: ОБЗОР ЛИТЕРАТУРЫ
- Статья получена: 16.10.2024
- Статья одобрена: 16.10.2024
- Статья опубликована: 08.07.2025
- URL: https://hemoncim.com/jour/article/view/905
- DOI: https://doi.org/10.24287/1726-1708-2024-23-3-176-197
- ID: 905
Цитировать
Полный текст
Аннотация
В последнее время произошло значительное развитие методов изучения морфологии и молекулярных процессов в тканях, клетках и субклеточных структурах. Благодаря этому появилась возможность получения качественно нового представления о причинах ранее необъяснимых клинических явлений в онкологии. Одним из наиболее загадочных феноменов является редкое парадоксальное свойство злокачественных новообразований становиться доброкачественными. В данном обзоре мы критически рассматриваем существующие гипотезы о механизмах, лежащих в основе созревания нейрогенных опухолей, с учетом новых данных об их происхождении и биологии и оцениваем перспективы применения этих знаний в клинике.
Об авторах
И. А. Зверев
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России; ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Москва
РоссияА. Е. Друй
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ГАУЗ CO «Институт медицинских клеточных технологий»
Автор, ответственный за переписку.
Email: dr-drui@yandex.ru
ORCID iD: 0000-0003-1308-8622
Друй Александр Евгеньевич - канд. мед. наук, заведующий лабораторией молекулярной онкологии
117997, Москва, ул. Саморы Машела, 1
РоссияСписок литературы
- Papac R.J. Spontaneous regression of cancer. Cancer Treat Rev 1996; 22 (6): 395–423. doi: 10.1016/S0305-7372(96)90023-7
- Zeineldin M., Patel A.G., Dyer M.A. Neuroblastoma: When differentiation goes awry. Neuron 2022; 110 (18): 2916–28. doi: 10.1016/j.neuron.2022.07.012
- Cheung N.V., Zhang J., Lu C., Parker M., Bahrami A., Tickoo S.K., et al. Association of Age at Diagnosis and Genetic Mutations in Patients With Neuroblastoma. JAMA 2012; 307 (10): 1062–71. doi: 10.1001/jama.2012.228
- Lavarino C., Cheung N.K., Garcia I., Domenech G., de Torres C., Alaminos M., et al. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma. BMC Cancer 2009; 9: 44.
- Wu Y., Zhang J. Study on differentially expressed genes between stage M and stage MS neuroblastoma. Front Oncol 2023; 12: 1083570. doi: 10.3389/fonc.2022.1083570
- Brodeur G.M. Spontaneous regression of neuroblastoma. Cell Tissue Res 2018; 372 (2): 277–86. doi: 10.1007/s00441-017-2761-2
- Kocak H., Ackermann S., Hero B., Kahlert Y., Oberthuer A., Juraeva D., et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma. Cell Death Dis 2013; 4 (4): e586.
- Meng X., Li H., Fang E., Feng J., Zhao X. Comparison of stage 4 and stage 4s neuroblastoma identifes autophagy-related gene and LncRNA Signatures Associated With Prognosis. Front Oncol 2020; 19 (10): 1411.
- Jin Z., Lu Y., Wu Y., Che J., Dong X. Development of differentiation modulators and targeted agents for treating neuroblastoma. Eur J Med Chem 2020; 207: 112818. doi: 10.1016/j.ejmech.2020.112818
- MacKenzie D.J. A Classification of the Tumours of the Glioma Group on a Histogenetic Basis With a Correlated Study of Prognosis. Can Med Assoc J 1926; 16 (7): 872.
- Dong R., Yang R., Zhan Y., Lai H.-D., Ye C.-J., Yao X.-Y., et al. Single-Cell Characterization of Malignant Phenotypes and Developmental Trajectories of Adrenal Neuroblastoma. Cancer Cell 2020; 38 (5): 716–33.e6. doi: 10.1016/j.ccell.2020.08.014
- Jansky S., Sharma A.K., Körber V., Quintero A., Toprak U.H., Wecht E.M., et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet 2021; 53 (5): 683–93. doi: 10.1038/s41588-021-00806-1
- Ponzoni M., Bachetti T., Corrias M.V., Brignole C., Pastorino F., Calarco E., et al. Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res 2022; 41 (1): 92. doi: 10.1186/s13046-022-02281-w
- Sriha J., Louis-Brennetot C., Pierre-Eugène C., Baulande S., Raynal V., Kramdi A., et al. BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells. Cancers (Basel) 2022; 14 (11): 2755. doi: 10.3390/cancers14112755
- Thiele C. Neuroblastoma Cell Lines. J Human Cell Culture 1998; 1: 21–53.
- van Groningen T., Koster J., Valentijn L.J., Zwijnenburg D.A., Akogul N., Hasselt N.E., et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet 2017; 49 (8): 1261–6. doi: 10.1038/ng.3899
- Boeva V., Louis-Brennetot C., Peltier A., Durand S., Pierre-Eugène C., Raynal V., et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat Genet 2017; 49 (9): 1408–13. doi: 10.1038/ng.3921
- Wolpaw A.J., Grossmann L.D., Dessau J.L., Dong M.M., Aaron B.J., Brafford P.A., et al. Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A 2022; 119 (6): e2102358119. doi: 10.1073/pnas.2102358119
- Sengupta S., Das S., Crespo A.C., Cornel A.M., Patel A.G., Mahadevan N.R., et al. Mesenchymal and adrenergic cell lineage states in neuroblastoma possess distinct immunogenic phenotypes. Nat Cancer 2022; 3: 1228–46.2022. doi: 10.1038/s43018-022-00427-5
- Zhu K., Xia Y., Tian X., He Y., Zhou J., Han R., et al. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14: 1271381. doi: 10.3389/fgene.2023.1271381
- Zimmerman M.W., Durbin A.D., He S., Oppel F., Shi H., Tao T., et al. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Sci Adv 2021; 7 (43): eabe0834. doi: 10.1126/sciadv.abe0834
- van Groningen T., Niklasson C.U., Chan A., Akogul N., Westerhout E.M., von Stedingk K., et al. An immature subset of neuroblastoma cells synthesizes retinoic acid and depends on this metabolite. bioRxiv. 2021. doi: 10.1101/2021.05.18.444639
- Ross R.A., Spengler B.A., Biedler J.L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 1983; 71 (4): 741–7.
- Estus S., Zaks W.J., Freeman R.S., Gruda M., Bravo R., Johnson E.M. Jr. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 1994; 127 (6 Pt 1): 1717–27. doi: 10.1083/jcb.127.6.1717
- Kogner P., Barbany G., Dominici C., Castello M.A., Raschella G., Persson H. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 1993; 53: 2044–50.
- Nakaga w ar a A., Arima Nakagawara M., Scavarda N.J., Azar C.G., Cantor A.B., Brodeur G.M. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 1993; 328 (12): 847–54. doi: 10.1056/NEJM199303253281205
- Brodeur G.M., Nakagawara A., Yamashiro D.J., Ikegaki N., Liu X.G., Azar C.G., et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 1997; 31 (1–2): 49–55. doi: 10.1023/a:1005729329526
- Nakagawara A., Azar C.G., Scavarda N.J., Brodeur G.M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14 (1): 759–67. doi: 10.1128/mcb.14.1.759-767.1994
- Otsuka K., Sasada M., Iyoda T., Nohara Y., Sakai S., Asayama T. et al. Combining peptide TNIIIA2 with all-trans retinoic acid accelerates N-Myc protein degradation and neuronal differentiation in MYCN-amplified neuroblastoma cells. Am J Cancer Res 2019; 9 (2): 434–48.
- Nosrat C.A., MacCallum D.K., Mistretta C.M. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures. Cell Tissue Res 2001; 303 (1): 35–45. doi: 10.1007/s004410000271
- Huang E.J., Reichardt L.F. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736. doi: 10.1146/annurev.neuro.24.1.677
- Bekinschtein P., Cammarota M., Katche C., Slipczuk L., Rossato J.I., Goldin A., et al. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 2008; 105 (7): 2711–6. doi: 10.1073/pnas.0711863105
- D'Angelo B., Benedetti E., Di Loreto S., Cristiano L., Laurenti G., Cerù M.P., Cimini A., et al. Signal transduction pathways involved in PPARb/d-induced neuronal differentiation. J Cell Physiol 2011; 226 (8): 2170–80. doi: 10.1002/jcp.22552
- Ohnishi T., Sakamoto K., Asami-Odaka A., et al. Generation of a novel artificial TrkB agonist, BM17d99, using T7 phage-displayed random peptide libraries. Biochem Biophys Res Commun 2017; 483 (1): 101–6. doi: 10.1016/j.bbrc.2016.12.186
- Li T., Yu Y., Song Y., Li X., Lan D., Zhang P., et al. Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. FASEB J 2020; 34 (7): 9087–101. doi: 10.1096/fj.201802159RRR
- Yuan Y., Ye H.Q., Ren Q.C. Proliferative role of BDNF/TrkB signaling is associated with anoikis resistance in cervical cancer. Oncol Rep 2018; 40 (2): 621–34. doi: 10.3892/or.2018.6515
- Colucci-D'Amato L., Speranza L., Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21 (20): 7777. doi: 10.3390/ijms21207777
- Lim J.Y., Park S.I., Kim S.M., Jun J.A., Oh J.H., Ryu C.H., et al. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and b-catenin phosphorylation and following transplantation into the developing brain. Cell Transplant 2011; 20 (11–12): 1855–66. doi: 10.3727/096368910X557236
- Xiong X., Li Y., Liu L., Qi K., Zhang C., Chen Y., Fang J. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells. Biol Res 2018; 51 (1): 18. doi: 10.1186/s40659-018-0167-6
- Xiong X., Zeng M., Peng X., Feng C., Li C., Weng W., Li Y., et al. Serum brain-derived neurotrophic factor (BDNF) as predictors of childhood neuroblastoma relapse. BMC Cancer 2023; 23 (1): 670. doi: 10.1186/s12885-023-11159-9
- Alberts B. Molecular biology of the cell. Garland Science; 2017.
- Chow T.T., Zhao Y., Mak S.S., Shay J.W., Wright W.E. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev 2012; 26 (11): 1167–78. doi: 10.1101/gad.187211.112
- Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Dis 2022; 12 (1): 31–46. doi: 10.1158/2159-8290.CD-21-1059
- Djos A., Thombare K., Vaid R., Gaarder J., Umapathy G., Reinsbach S.E., et al. Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes. Cancers (Basel) 2023; 15 (24): 5732. doi: 10.3390/cancers15245732
- Hiyama E., Hiyama K., Yokoyama T., Matsuura Y., Piatyszek M.A., Shay J.W. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995; 1 (3): 249–55. doi: 10.1038/nm0395-249
- Valentijn L.J., Koster J., Zwijnenburg D.A., Hasselt N.E., van Sluis P., Volckmann R. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 2015; 47 (12): 1411–4. doi: 10.1038/ng.3438
- Peifer M., Hertwig F., Roels F., Dreidax D., Gartlgruber M., Menon R., et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 2015; 526 (7575): 700–4. doi: 10.1038/nature14980
- Ackermann S., Cartolano M., Hero B., Welte A., Kahlert Y., Roderwieser A., et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018; 362 (6419): 1165–70. doi: 10.1126/science.aat6768
- Samy M., Gattolliat C.H., Pendino F., Hillion J., Nguyen E., Bombard S., et al. Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant. Mol Cancer Ther 2012; 11 (11): 2384–93. doi: 10.1158/1535-7163.MCT-12-0281
- Spontaneous regression and differentiation in neuroblastoma lacking telomerase. Werr L. Plenary session I: Genetic defects and dependencies in neuroblastoma. May 15, 2023.
- Lopes-Bastos B., Nabais J., Ferreira T., El Maï M., Bird M., Targen S., et al. Absence of Telomerase Leads to Immune Response and Tumor Regression in Zebrafish Melanoma. bioRxiv 2023; 24: 534079. doi: 10.1101/2023.03.24.534079
- Yu E.Y., Zahid S.S., Aloe S., Falck-Pedersen E., Zhou X.K., Cheung N.-K.V., Lue N.F. Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology. Commun Biol 2021; 4 (1): 1315. doi: 10.1038/s42003-021-02821-8
- van Groningen T., Akogul N., Westerhout E.M., Chan A., Hasselt N.E., Zwijnenburg D.A., et al. A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma. Nat Commun 2019; 10 (1): 1530. doi: 10.1038/s41467-019-09470-w
- van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385 (6618): 740–3. doi: 10.1038/385740a0
- Nera B., Huang H.S., Lai T., Xu L. Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nat Commun 2015; 6: 10132. doi: 10.1038/ncomms10132
- Dupin E., Calloni G.W., Coelho-Aguiar J.M., Le Douarin N.M. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1: S47–59. doi: 10.1016/j.ydbio.2018.03.024
- Bronner-Fraser M., Fraser S.E. Application of new technologies to studies of neural crest migration and differentiation. Am J Med Genet Suppl 1988; 4: 23–39. doi: 10.1002/ajmg.1320310509
- Graham A. The neural crest. Curr Biol 2003; 13 (10): R381–4. doi: 10.1016/s0960-9822(03)00315-4
- Arneth B. Tumor Microenvironment. Medicina (Kaunas) 2019; 56 (1): 15. doi: 10.3390/medicina56010015
- Quinn C.H., Beierle A.M., Beierle E.A. Artificial Tumor Microenvironments in Neuroblastoma. Cancers 2021; 13: 1629. doi: 10.3390/cancers13071629
- Kwiatkowski J.L., Rutkowski J.L., Yamashiro D.J., Tennekoon G.I., Brodeur G.M. Schwann cell-conditioned medium promotes neuroblastoma survival and differentiation. Cancer Res 1998; 58 (20): 4602–6.
- Pajtler K.W., Mahlow E., Odersky A., Lindner S., Stephan H., Bendix I., et al. Neuroblastoma in dialog with its stroma: NTRK1 is a regulator of cellular cross-talk with Schwann cells. Oncotarget 2014; 5 (22): 11180–92. doi: 10.18632/oncotarget.2611
- Weiss T., Taschner-Mandl S., Janker L., Bileck A., Rifatbegovic F., Kromp F., et al. Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8. Nat Commun 2021; 12 (1): 1624. doi: 10.1038/s41467-021-21859-0
- Jessen K.R., Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016; 594 (13): 3521–31. doi: 10.1113/JP270874
- Clements M.P., Byrne E., Camarillo Guerrero L.F., Cattin A.-L., Zakka L., Ashraf A., et al. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron 2017; 96 (1): 98–114.e7. doi: 10.1016/j.neuron.2017.09.008
- Shimada H., Ambros I.M., Dehner L.P., Hata J., Joshi V.V., Roald B., et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 1999; 86 (2): 364–72.
- Hashimoto O., Yoshida M., Koma Y., Yanai T., Hasegawa D., Kosaka Y., et al. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol 2016; 240 (2): 211–23. doi: 10.1002/path.4769
- Mina M., Boldrini R., Citti A., Romania P., D’Alicandro V., De Ioris M., et al. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma. Oncoimmunology 2015; 4: e1019981. doi: 10.1080/2162402X.2015.1019981
- Wienke J., Dierselhuis M.P., Tytgat G.A.M., Künkele A., Nierkens S., Molenaar J.J. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2021; 144: 123–50. doi: 10.1016/j.ejca.2020.11.014
- Layer J.P., Kronmu¨ller M.T., Quast T., Boorn-Konijnenberg D.V., Effern M., Hinze D., et al. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncoimmunology 2017; 6: e1320626. doi: 10.1080/2162402X.2017.1320626
- Antunes N.L., Khakoo Y., Matthay K.K., Seeger R.C., Stram D.O., Gerstner E., et al. Antineuronal antibodies in patients with neuroblastoma and paraneoplastic opsoclonus-myoclonus. J Pediatr Hematol Oncol 2000; 22 (4): 315–20. doi: 10.1097/00043426-200007000-00007
- Pranzatelli M.R., Travelstead A.L., Tate E.D., et al. Band T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology 2004; 62 (9): 1526–32. doi: 10.1212/wnl.62.9.1526
- Zar T., Tschernatsch M., Hero B., Lang B., Preissner K.T., Blaes F. NK Cell-mediated Neuroblastoma Cell Lysis is Enhanced by IgG From Patients With Pediatric Opsoclonus-Myoclonus Syndrome. J Pediatr Hematol Oncol 2021; 43 (2): e176–9. doi: 10.1097/MPH.0000000000001953
- Cao L., Liu Q., Ma Y., Wang S. Identification of immune-related signature with prognosis in children with stage 4 and 4S neuroblastoma. Clin Transl Oncol 2023. doi: 10.1007/s12094-023-03320-4
- Spel L., Nieuwenhuis J., Haarsma R., Stickel E., Bleijerveld O.B., Altelaar M., et al. Nedd4-Binding protein 1 and TNFAIP3-interacting protein 1 control MHC-1 display in neuroblastoma. Canc Res 2018; 78: 6621e31. doi: 10.1158/00085472. CAN-18-0545
- Prigione I., Corrias M.V., Airoldi I., Raffaghello L., Morandi F., Bocca P., et al. Immunogenicity of human neuroblastoma. Ann N Y Acad Sci 2004; 1028: 69e80. doi: 10.1196/annals.1322.008
- Grobner S.N., Worst B.C., Weischenfeldt J., Buchhalter I., Kleinheinz K., Rudneva V.A., et al. The landscape of genomic alterations across childhood cancers. Nature 2018; 555: 321e7. doi: 10.1038/nature25480
- Carlson L.-M., Pahlman S., De Geer A., Kogner P., Levitskaya J. Differentiation induced by physiological and pharmacological stimuli leads to increased antigenicity of human neuroblastoma cells. Cell Res 2008; 18: 398e411. doi: 10.1038/cr.2008.27
- Fetahu I.S., Taschner-Mandl S. Neuroblastoma and the epigenome. Cancer Metastasis Rev 2021; 40 (1): 173–89. doi: 10.1007/s10555-020-09946-y
- Li Z., Takenobu H., Setyawati A.N., et al. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications. Oncogene 2018; 3 7(20): 2714–27. doi: 10.1038/s41388-018-0133-3
- Chase A., Cross N.C. Aberrations of EZH2 in cancer. Clin Cancer Res 2011; 17 (9): 2613–8. doi: 10.1158/1078-0432.CCR-10-2156
- Martinez-Garcia E., Licht J.D. Deregulation of H3K27 methylation in cancer. Nat Genet 2010; 42 (2): 100–1. doi: 10.1038/ng0210-100
- Lee S.T., Li Z., Wu Z., et al. Context-specific regulation of NF-kB target gene expression by EZH2 in breast cancers. Mol Cell 2011; 43 (5): 798–810. doi: 10.1016/j.molcel.2011.08.011
- Xu K., Wu Z.J., Groner A.C., et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338 (6113): 1465–9. doi: 10.1126/science.1227604
- Kim E., Kim M., Woo D.H., Shin Y., Shin J., Chang N., et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stemlike cells. Cancer Cell 2013; 23: 839–52. doi: 10.1016/j.ccr.2013.04.008
- Corvetta D., Chayka O., Gherardi S., et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem 2013; 288 (12): 8332–41. doi: 10.1074/jbc.M113.454280
- Yang L., Zha Y., Ding J., Ye B., Liu M., Yan C., et al. Histone demethylase KDM6B has an anti-tumorigenic function in neuroblastoma by promoting differentiation. Oncogenesis 2019; 8 (1): 3. doi: 10.1038/s41389-018-0112-0
- Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21 (3): 381–95. doi: 10.1038/cr.2011.22
- Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150 (1): 12–27. doi: 10.1016/j.cell.2012.06.013
- Oehme I., Deubzer H.E., Wegener D., Pickert D., Linke J.-P., Hero B., et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 2009; 15 (1): 91–9. doi: 10.1158/1078-0432.CCR-08-0684
- Oehme I., Linke J.P., Böck B.C., Milde T., Lodrini M., Hartenstein B., et al. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci U S A 2013; 110 (28): E2592–601. doi: 10.1073/pnas.1300113110
- Rettig I., Koeneke E., Trippel F., Mueller W.С., Burhenne J., Kopp-Schneider A., et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis 2015; 6 (2): e1657. doi: 10.1038/cddis.2015.24
- Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 (1): 6–21. doi: 10.1101/gad.947102
- Baylin S.B., Jones P.A. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol 2016; 8 (9): a019505. doi: 10.1101/cshperspect.a019505
- Decock A., Ongenaert M., Vandesompele J., Speleman F. Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 2011; 6 (8): 962–70. doi: 10.4161/epi.6.8.16516
- Ostler K.R., Yang Q., Looney T.J., Zhang L., Vasanthakumar A., Tian Y., et al. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res. 2012; 72 (18): 4714–23. doi: 10.1158/0008-5472.CAN-12-0886
- Bui C.B., Le H.K., Vu D.M., Dinh Truong K.-D., Manh Nguyen N., Anh Nguyen Ho M., Quang Truong D., et al. ARID1A-SIN3A drives retinoic acid-induced neuroblastoma differentiation by transcriptional repression of TERT. Mol Carcinog 2019; 58 (11): 1998–2007. doi: 10.1002/mc.23091
- Lovén J., Zinin N., Wahlström T., Müller I., Brodin P., Fredlund E., et al. MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A 2010; 107 (4): 1553–8. doi: 10.1073/pnas.0913517107
- Dzieran J., Rodriguez Garcia A., Westermark U.K., Henley A.B., Eyre Sánchez E., Träger C., et al. MYCN-amplified neuroblastoma maintains an aggressive and undifferentiated phenotype by deregulation of estrogen and NGF signaling. Proc Natl Acad Sci U S A 2018; 115 (6): E1229–38. doi: 10.1073/pnas.1710901115
- Meyer J.S. Biochemical effects of corticosteroids on neural tissues. Physiol Rev 1985; 65 (4): 946–1020. doi: 10.1152/physrev.1985.65.4.946
- Kildisiute G., Kholosy W.M., Young M.D., Roberts K., Elmentaite R., van Hooff S.R., et al. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv 2021; 7 (6): eabd3311. doi: 10.1126/sciadv.abd3311. Published correction appears in Sci Adv 2022; 8 (20): eabq6127. doi: 10.1126/sciadv.abq6127
- Raif A., Marshall G.M., Bell J.L., Koach J., Tan O., D'andreti C., et al. The estrogen-responsive B box protein (EBBP) restores retinoid sensitivity in retinoid-resistant cancer cells via effects on histone acetylation. Cancer Lett 2009; 277 (1): 82–90. doi: 10.1016/j.canlet.2008.11.030
- Sainero-Alcolado L., Mushtaq M., Liaño-Pons J., Rodriguez-Garcia A., Yuan Y., Liu T., et al. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. J Exp Clin Cancer Res 2022; 41 (1): 226. doi: 10.1186/s13046-022-02399-x
- Shakya R., Amonruttanapun P., Limboonreung T., Chongthammakun S. 17b-estradiol mitigates the inhibition of SH-SY5Y cell differentiation through WNT1 expression. Cells Dev 2023; 176: 203881. doi: 10.1016/j.cdev.2023.203881
- Cai D.X., Mafra M., Schmidt R.E., Scheithauer B.W., Park T.S., Perry A. Medulloblastomas with extensive posttherapy neuronal maturation. Report of two cases. J Neurosurg 2000; 93 (2): 330–4. doi: 10.3171/jns.2000.93.2.0330
- Wu X., Zhou Y., Li L., Liang P., Zhai X. Post-treatment maturation of medulloblastoma in children: two cases and a literature review. J Int Med Res 2018; 46 (11): 4781–90. doi: 10.1177/0300060518788251
- Kubota K.C., Itoh T., Yamada Y., Yamaguchi S., Ishida Y., Nakasu Y., et al. Melanocytic medulloblastoma with ganglioneurocytomatous differentiation: a case report. Neuropathology 2009; 29 (1): 72–7. doi: 10.1111/j.1440-1789.2008.00913.x
- Mullarkey M.P., Nehme G., Mohiuddin S., Ballester L.Y., Bhattacharjee M.B., Trivedi D., et al. Posttreatment Maturation of Medulloblastoma into Gangliocytoma: Report of 2 Cases. Pediatr Neurosurg 2020; 55 (4): 222–31. doi: 10.1159/000509520
- Valvi S., Ziegler D.S. Ganglioglioma Arising From Desmoplastic Medulloblastoma: A Case Report and Review of Literature. Pediatrics 2017; 139 (3): e20161403. doi: 10.1542/peds.2016-1403
- Chelliah D., Mensah Sarfo-Poku C., Stea B.D., Gardetto J., Zumwalt J. Medulloblastoma with extensive nodularity undergoing post-therapeutic maturation to a gangliocytoma: a case report and literature review. Pediatr Neurosurg 2010; 46 (5): 381–4. doi: 10.1159/000322896
- Warzok R., Jänisch W. The neuroblastoma of the cerebellum. Zentralbl Allg Pathol 1983; 128 (1–2): 21–30. [In German].
- de Chadarévian J.P., Montes J.L., O'Gorman A.M., Freeman C.R. Maturation of cerebellar neuroblastoma into ganglioneuroma with melanosis. A histologic, immunocytochemical, and ultrastructural study. Cancer 1987; 59 (1): 69–76. doi: 10.1002/1097-0142(19870101)59:1<69::aid-cncr2820590117>3.0.co;2-8
- Geyer J.R., Schofield D., Berger M., Milstein J. Differentiation of a primitive neuroectodermal tumor into a benign ganglioglioma. J Neuroоncol 1992; 14: 237–41. doi: 10.1007/BF00172599
- Kudo M., Shimizu M., Akutsu Y., Imaya H., Chen M.N., Miura M. Ganglioglial differentiation in medulloblastoma. Acta Pathol Jpn 1990; 40 (1): 50–6. doi: 10.1111/j.1440-1827.1990.tb01528.x
- Suresh T.N., Santosh V., Yasha T.C., Anandh B., Mohanty A., Indiradevi B., et al. Medulloblastoma with extensive nodularity: a variant occurring in the very young-clinicopathological and immunohistochemical study of four cases. Childs Nerv Syst 2004; 20 (1): 55–60. doi: 10.1007/s00381-003-0855-5
- Schüller U., Schober F., Kretzschmar H.A., Herms J. Bcl-2 expression inversely correlates with tumour cell differentiation in medulloblastoma. Neuropathol Appl Neurobiol 2004; 30 (5): 513–21. doi: 10.1111/j.1365-2990.2004.00553.x
- Bernier P.J., Parent A. Bcl-2 protein as a marker of neuronal immaturity in postnatal primate brain. J Neurosci 1998; 18 (7): 2486–97. doi: 10.1523/JNEUROSCI.18-07-02486.1998
- Kaloni D., Diepstraten S.T., Strasser A., Kelly G.L. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28 (1–2): 20–38. doi: 10.1007/s10495-022-01780-7
- Zhang K.Z., Westberg J.A., Hölttä E., Andersson L.C. BCL2 regulates neural differentiation. Proc Natl Acad Sci U S A 1996; 93 (9): 4504–8. doi: 10.1073/pnas.93.9.4504
- Armandari I., Zomerman W.W., Plasschaert S.L.A., et al. CREB signaling activity correlates with differentiation and survival in medulloblastoma. Sci Rep 2021; 11 (1): 16077. doi: 10.1038/s41598-021-95381-0
- Ohta T., Watanabe T., Katayama Y., Kurihara J., Yoshino A., Nishimoto H., Kishimoto H. TrkA expression is associated with an elevated level of apoptosis in classic medulloblastomas. Neuropathology 2006; 26 (3): 170–7. doi: 10.1111/j.1440-1789.2006.00678.x
- Eberhart C.G., Kaufman W.E., Tihan T., Burger P.C. Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 2001; 60 (5): 462–9. doi: 10.1093/jnen/60.5.462
- Katsetos C.D., Del Valle L., Legido A., de Chadarévian J.P., Perentes E., Mörk S.J. On the neuronal/neuroblastic nature of medulloblastomas: a tribute to Pio del Rio Hortega and Moises Polak. Acta Neuropathol 2003; 105 (1): 1–13. doi: 10.1007/s00401-002-0618-5
- Chen Y., Tseng S.H., Lai H.S., Chen W.J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 2004; 136 (1): 57–66. doi: 10.1016/j.surg.2004.01.017
- Wang Q., Li H., Wang X.W., Wu D.C., Chen X.Y., Liu J. Resveratrol promotes differentiation and induces Fas-independent apoptosis of human medulloblastoma cells. Neurosci Lett 2003; 351 (2): 83–6. doi: 10.1016/j.neulet.2003.07.002
- Ko Y.C., Chang C.L., Chien H.F., Wu C.H., Lin L.I. Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett 2011; 309 (1): 46–53. doi: 10.1016/j.canlet.2011.05.014
- Li Y.T., Tian X.T., Wu M.L., Zheng X., Kong Q.-Y., Cheng X.-X., et al. Resveratrol Suppresses the Growth and Enhances Retinoic Acid Sensitivity of Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2018; 19 (4): 1030. doi: 10.3390/ijms19041030
- Zhang P., Li H., Wu M.L., Chen X.-Y., Kong Q.-Y., Wang X.-W., et al. c-Myc downregulation: a critical molecular event in resveratrol-induced cell cycle arrest and apoptosis of human medulloblastoma cells. J Neurooncol 2006; 80 (2): 123–31. doi: 10.1007/s11060-006-9172-7
- Miloso M., Bertelli A.A., Nicolini G., Tredici G. Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci Lett 1999; 264 (1–3): 141–4. doi: 10.1016/s0304-3940(99)00194-9
- Serra J.M., Gutiérrez A., Alemany R., Navarro M., Ros T., Saus C., et al. Inhibition of c-Myc down-regulation by sustained extracellular signal-regulated kinase activation prevents the antimetabolite methotrexateand gemcitabine-induced differentiation in non-small-cell lung cancer cells. Mol Pharmacol 2008; 73 (6): 1679–87. doi: 10.1124/mol.107.043372
- Valderrama X., Rapin Verge V.M., Misra V. Zhangfei induces the expression of the nerve growth factor receptor, trkA, in medulloblastoma cells and causes their differentiation or apoptosis. J Neurooncol 2009; 91 (1): 7–17. doi: 10.1007/s11060-008-9682-6
- Bodnarchuk T.W., Napper S., Rapin N., Misra V. Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF. J Neurooncol 2012; 109 (3): 485–501. doi: 10.1007/s11060-012-0927-z
- Schüller U., Heine V.M., Mao J., Kho A.T., Dillon A.K., Han Y.-G., et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 2008; 14 (2): 123–34. doi: 10.1016/j.ccr.2008.07.005
- Okonechnikov K., Joshi P., Sepp M., Leiss K., Sarropoulos I., Murat F., et al. Mapping pediatric brain tumors to their origins in the developing cerebellum. Neuro Oncol 2023; 25 (10): 1895–909. doi: 10.1093/neuonc/noad124. Published correction appears in Neuro Oncol 2023; 25 (11): 2107–8. doi: 10.1093/neuonc/noad167
- Komuro H., Yacubova E. Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 2003; 60 (6): 1084–98. doi: 10.1007/s00018-003-2248-z
- Wechsler-Reya R.J., Scott M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22 (1): 103–14. doi: 10.1016/s0896-6273(00)80682-0
- Gold M.P., Ong W., Masteller A.M., Ghasemi D.R., Galindo J.A., Park N.R., et al. Developmental basis of SHH medulloblastoma heterogeneity. Nat Commun 2024; 15 (1): 270. doi: 10.1038/s41467-023-44300-0
- Riemondy K.A., Venkataraman S., Willard N., Nellan A., Sanford B., Griesinger A.M., et al. Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro Oncol 2022; 24 (2): 273–86. doi: 10.1093/neuonc/noab135
- Virgintino D., Ambrosini M., D'Errico P., et al. Regional distribution and cell type-specific expression of the mouse F3 axonal glycoprotein: a developmental study. J Comp Neurol 1999; 413 (3): 357–9861(19991025)413:3<357::aidcne1>3.0.co;2-s 72. doi: 10.1002/(sici)1096-
- Hovestadt V., Smith K.S., Bihannic L., Filbin M.G., Shaw M.L., Baumgartner A., et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 2019; 572 (7767): 74–9. doi: 10.1038/s41586-019-1434-6
- Slika H., Alimonti P., Raj D., Caraway C., Alomari S., Jackson E.M., Tyler B., et al. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15 (15): 3889. doi: 10.3390/cancers15153889
- Northcott P.A., Buchhalter I., Morrissy A.S., Hovestadt V., Weischenfeldt J., Ehrenberger T., et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017; 547 (7663): 311–7. doi: 10.1038/nature22973
- Sheng H., Li H., Zeng H., Zhang B., Lu Y., Liu X., et al. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43 (12): 839–50. doi: 10.1038/s41388-024-02967-9
- Vo B.T., Li C., Morgan M.A., Theurillat I., Finkelstein D., Wright S., et al. Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive MycDriven Group 3 Medulloblastoma. Cell Rep 2017; 18 (12): 2907–17. doi: 10.1016/j.celrep.2017.02.073
- Cheng Y., Liao S., Xu G., Hu J., Guo D., Du F., et al. NeuroD1 Dictates Tumor Cell Differentiation in Medulloblastoma. Cell Rep 2020; 31 (12): 107782. doi: 10.1016/j.celrep.2020.107782
- Gorini F., Miceli M., de Antonellis P., Amente S., Zollo M., Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14: 1135404. doi: 10.3389/fgene.2023.1135404
- Vitale C., Bottino C., Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12 (6): 885. doi: 10.3390/cells12060885
- Qadeer Z.A., Weiss W.A. A SHHecret target of relapsed medulloblastoma: Astrocytes. J Exp Med 2021; 218 (9): e20211141. doi: 10.1084/jem.20211141
- Sturm D., Orr B.A., Toprak U.H., Hovestadt V., Jones D.T.W., Capper D., et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016; 164 (5): 1060–72. doi: 10.1016/j.cell.2016.01.015
- Lafay-Cousin L., Hader W., Wei X.C., Nordal R., Strother D., Hawkins C., Chan J.A. Post-chemotherapy maturation in supratentorial primitive neuroectodermal tumors. Brain Pathol 2014; 24 (2): 166–72. doi: 10.1111/bpa.12089
- Driever P.H., Wagner S., Hofstädter F., Wolff J.E. Valproic acid induces differentiation of a supratentorial primitive neuroectodermal tumor. Pediatr Hematol Oncol 2004; 21 (8): 743–51. doi: 10.1080/08880010490514985
- Alizadeh S.D., Jalalifar M.R., Ghodsi Z., Sadeghi-Naini M., Malekzadeh H., Rahimi G., et al. Reprogramming of astrocytes to neuronal-like cells in spinal cord injury: a systematic review. Spinal Cord 2024; 62 (4): 133–42. doi: 10.1038/s41393-024-00969-8
- Antonelli M., Korshunov A., Mastronuzzi A., Diomedi Camassei F., Carai A., Colafati G.S., et al. Long-term survival in a case of ETANTR with histological features of neuronal maturation after therapy. Virchows Arch 2015; 466 (5): 603–7. doi: 10.1007/s00428-015-1736-5
- Levine A., Hukin J., Dunham C. Pontine Embr yonal Tumor with Multilayered Rosettes: An Autopsy Case Exhibiting Extensive Posttreatment Glial and Neuronal Maturation. Pediatr Dev Pathol 2020; 23 (4): 326–31. doi: 10.1177/1093526620912645
- Gualano F.M., Hassoun P., Carter C.L., Hanson D. Embryonal tumor with multilayered rosettes: Post-treatment maturation and implications for future therapy. Cancer Rep (Hoboken) 2023; 6 (5): e1812. doi: 10.1002/cnr2.1812
- Bidgoli A., McLendon R.E., Johnston J.M. Histologic maturation of cerebral neuroblastoma following conventional chemotherapy. Pediatr Blood Cancer 2021; 68 (7): e29034. doi: 10.1002/pbc.29034
- Nozza P., Casciana M.L., Rossi A., Cama A., Milanaccio C., Raso A., et al. Post-chemotherapy maturation of a pineoblastoma. Acta Neuropathol 2010; 119 (5): 651–3. doi: 10.1007/s00401-010-0668-z
- Horbinski C., Dillon D., Pittman T. Low-grade recurrence of a congenital high-grade supratentorial tumor with astrocytic features in the absence of adjuvant therapy. Neuropathology 2011; 31 (3): 286–91. doi: 10.1111/j.1440-1789.2010.01156.x
- Hamilton P., Lawrence P., Jaggon J., Greaves V., ReeceMills M., Hazrati L.-N., Eisenring C.V. Embryonal tumour with multi-layered rosettes a case based review of the literature. Interdisciplinary Neurosurg 2021; 25: 101245. doi: 10.1016/j.inat.2021.101245
- Korshunov A., Ryzhova M., Jones D.T., Northcott P.A., van Sluis P., Volckmann R., et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol 2012; 124 (6): 875–81. doi: 10.1007/s00401-012-1068-3
- Lambo S., von Hoff K., Korshunov A., Pfister S.M., Kool M. ETMR: a tumor entity in its infancy. Acta Neuropathol 2020; 140 (3): 249–66. doi: 10.1007/s00401-020-02182-2
- Jessa S., Blanchet-Cohen A., Krug B., Vladoiu M., Coutelier M., Faury D., et al. Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 2019; 51 (12): 1702–13. doi: 10.1038/s41588-019-0531-7
- Blaney S.M., Helman L.J., Adamson P.C. Pizzo and Poplack’s Pediatric Oncology. LWW. 2020.
- Sobel R.A., Trice J.E., Nielsen S.L., Ellis W.G. Pineoblastoma with ganglionic and glial differentiation: report of two cases. Acta Neuropathol 1981; 55 (3): 243–6. doi: 10.1007/BF00691324
- Tamrazi B., Nelson M., Blüml S. Pineal Region Masses in Pediatric Patients. Neuroimaging Clin N Am 2017; 27 (1): 85–97. doi: 10.1016/j.nic.2016.08.002
- Guerreiro Stucklin A.S., Ryall S., Fukuoka K., Zapotocky M., Lassaletta A., Li C., et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 2019; 10 (1): 4343. doi: 10.1038/s41467-019-12187-5
- Janesick A., Wu S.C., Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72 (8): 1559–76. doi: 10.1007/s00018-014-1815-9
- de Thé H. Differentiation therapy revisited. Nat Rev Cancer. 2018; 18 (2): 117–27. doi: 10.1038/nrc.2017.103
- Smith V., Foster J. High-Risk Neuroblastoma Treatment Review. Children (Basel) 2018; 5 (9): 114. doi: 10.3390/children5090114
- Mezquita B., Mezquita C. Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9 (10): 567. doi: 10.3390/biom9100567
- Westermark U.K., Wilhelm M., Frenzel A., Henriksson M.A. The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 2011; 21 (4): 256–66. doi: 10.1016/j.semcancer.2011.08.001
- Parrella P., Caballero O.L., Sidransky D., Merbs S.L. Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization. Invest Ophthalmol Vis Sci 2001; 42 (8): 1679–84.
- Yarchoan M., Hopkins A., Jaffee E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med 2017; 377 (25): 2500–1. doi: 10.1056/NEJMc1713444
- Casey D.L., Cheung N.V. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer Immunol Res 2020; 8 (2): 161–6. doi: 10.1158/2326-6066.CIR-19-0692
Дополнительные файлы



