Treatment approaches to hyper-IgE syndrome: a clinical case report

Cover Page

Cite item

Full Text

Abstract

The hyper-IgE syndrome with dominant-negative mutations in signal transducer and activator of transcription 3 (STAT3) gene is a combined primary immunodeficiency characterized by severe bacterial infections (skin and lungs with bullae formation), characteristic phenotype, serum IgE elevation, eosinophilia, as well as connective tissue, and bone anomalies. Patients also have  high risk of cancer. STAT3 is a transcription factor important for the JAK/STAT signaling pathway, which plays the key role in the synthesis of cytokines, hormones, and bioactive agents. Hyper-IgE syndrome therapy includes antimicrobial prophylaxis, immunoglobulin replacement, and use of bisphosphonates. Hematopoietic stem cell transplantation is an alternative way for the disease treatment. Here we describe a patient with severe autosomal dominant hyper-IgE-syndrome with thte loss-of-function mutation in the STAT3 gene. Patient's parents agreed to use personal dats and photos in research and publications.

About the authors

A. K. Kantulaeva

Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation.

Author for correspondence.
ORCID iD: 0000-0001-5962-1264
Russian Federation

N. B. Kuzmenko

Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation.

Email: plunge@list.ru
ORCID iD: 0000-0002-1669-8621

 MD, Chief of the Department of Epidemiology and PIDS monitoring.

 117997, Moscow, Samory Mashela st., 1. 

Russian Federation

E. V. Deripapa

Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation.

ORCID iD: 0000-0002-9083-4783
Russian Federation

D. V. Yukhacheva

Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation.

ORCID iD: 0000-0001-9078-8206
Russian Federation

E. A. Victorova

Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation.

ORCID iD: 0000-0002-2427-1417
Russian Federation

V. I. Burlakov

Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation.

ORCID iD: 0000-0003-1267-9957
Russian Federation

A. Y. Shcherbina

Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation.

ORCID iD: 0000-0002-3113-4939
Russian Federation

References

  1. Grimbacher В., Belohradsky B.H., Holland S.M. Immunoglobulin E in primary immunodeficiency diseases. Allergy 2002; 57: 995–1007.
  2. Freeman A.F., Holland S.M. Clinical manifestations of hyper IgE syndromes. DisMarkers 2010; 29: 123–30.
  3. Szczawinska-Poplonyk A., Kycler Z., Pietrucha B., Heropolitanska-Pliszka E., Breborowicz A., Gerreth K. The hyperimmunoglobulin E syndrome – clinical manifestation diversity in primary immune deficiency. Orphanet J Rare Dis 2011; 15(6): 76.
  4. Yong P.F., Freeman A.F., Engel- hardt K.R., Holland S., Puck J.M., Grimbacher B., et al. An update on the hyper-IgE syndromes. Arthritis Res Ther 2012; 14 (6): 228.
  5. Бологов А.А., Сметанина Н.С., Кондратенко И.В. Молекулярногенетические механизмы синдрома гипериммуноглобуленемии Е. Технологии живых систем 2008; 5 (2, 3): 73–81.
  6. Davis S.D., Schaller J., Wedgwood R.J. Job’s syndrome: recurrent, cold, staphylococcal abscesses. Lancet 1966; 1 (7445): 1013–5.
  7. Minegishi Y., Saito M., Tsuchiya S., Tsuge I., Takada H., Hara T., et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007; 448 (7157): 1058–62.
  8. Zhang Q., Davis J.C., Lamborn I.T., Freeman A.F., Jing H., Favreau A.J., et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med 2009; 361 (21): 2046–55.
  9. Alsum Z., Hawwari A., Alsmadi O., Al-Hissi S., Borrero E., Abu-Stai- teh A., et al. Clinical, immunological and molecular characterization of DOCK8 and DOCK8-like deficient patients: single center experience of twenty-five patients. J Clin Immunol 2013; 33 (1): 55–67.
  10. Murray P.J. The JAK-STAT signaling pathway: input and output integration. J Immunol 2007; 178 (5): 2623–9.
  11. Grimbacher B., Holland S.M., Gallin J.I., Greenberg F., Hill S.C., Malech H.L., et al. Hyper-IgE syndrome with recurrent infections – an autosomal dominant multisystem disorder. N Engl J Med 1999; 340: 692–702.
  12. Minegishi Y., Karasuyama H. Hyperimmunoglobulin E syndrome and tyrosine kinase 2 deficiency. Curr Opin Allergy Clin Immunol 2007; 7 (6): 506–9.
  13. Milner J.D., Brenchley J.M., Lauren- ce A., Freeman A.F., Hill B.J., Elias K.M., et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008; 452 (7188): 773–6.
  14. Grimbacher B., Schäffer A.A., Hol- land S.M., Davis J., Gallin J.I., Malech H.L., et al. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet 1999; 65: 735–44.
  15. Ochs H.D., Petroni D. From clinical observations and molecular dissection to novel therapeutic strategies for primary immunodeficiency disorders. Am J Med Genet A 2018; 176 (4): 784–803.
  16. Sowerwine K.J., Shaw P.A., Gu W., Ling J.C., Collins M.T., Darnell D.N., et al. Bone density and fractures in autosomal dominant hyper IgE syndrome. J Clin Immunol 2014; 34 (2): 260–4.
  17. Yanagimachi M., Ohya T., Yokosuka T., Kajiwara R., Tanaka F., Goto H., et al. The Potential and Limits of Hematopoietic Stem Cell Transplantation for the Treatment of Autosomal Dominant Hyper-IgE Syndrome. J Clin Immunol 2016; 36 (5): 511–6.
  18. Holland S.M., DeLeo F.R., Elloumi H.Z., Hsu A.P., Uzel G., Brodsky N., et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007; 357 (16): 1608–19.
  19. Liang S.C., Tan X.Y., Luxenberg D.P., Karim R., Dunussi-Joannopoulos K., Collins M., et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203 (10): 2271–9.
  20. Zheng Y., Valdez P.A., Danilenko D.M., Hu Y., Sa S.M., Gong Q., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14 (3): 282–9.
  21. Puel A., Döffinger R., Natividad A., Chrabieh M., Barcenas-Morales G., Picard C., Cobat A., et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 2010; 207 (2): 291–7.
  22. Wang P., Wu P., Siegel M.I., Egan R.W., Billah M.M. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995; 270: 9558–63.
  23. Taylor A., Verhagen J., Blaser K., Akdis M., Akdis C.A. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology 2006; 117: 433–42.
  24. Kuchen S., Robbins R., Sims G.P., Sheng C., Phillips T.M., Lipsky P.E., Ettinger R. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol 2007; 179 (9): 5886–96.
  25. Avery D.T., Ma C.S., Bryant V.L., Santner-Nanan B., Nanan R., Wong M., et al. STAT3 is required for IL-21-induced secretion of IgE from human naive B cells. Blood 2008; 112 (5): 1784–93.
  26. Pyo R., Lee J.K., Shipley J.M., Curci J.A., Mao D., Ziporin S.J., et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000; 105 (11): 1641–9.
  27. Al-Shaikhly T., Ochs H.D. Hyper IgE Syndromes, Clinical and Molecular Characteristics. Immunol Cell Biol 2018 Sep 28.
  28. Worth A.J., Booth C., Veys P. Stem cell transplantation for primary immune deficiency. Curr Opin Hematol 2013; 20 (6): 501–8.
  29. Aydin S., Freeman A.F., Su H., Hick- stein D., Pai S.-Y., Geha R., Albert M.H. HSCT for DOCK8 Deficiency – an International Study on 74 Patients. Blood and Marrow Transplantation 2016; 22 (3): S103–S104.
  30. Patel N.C., Gallagher J.L., Torger-son T.R., Gilman A.L. Successful haploidentical donor hematopoietic stem cell transplant and restoration of STAT3 function in an adolescent with autosomal dominant hyper-IgE syndrome. J Clin Immunol 2015; 35: 479.
  31. Gennery A.R., Flood T.J., Abinun M., Cant A.J. Bone marrow transplantation does not correct the hyper IgE syndrome. Bone Marrow Transplant 2000; 25: 1303.
  32. Goussetis E., Peristeri I., Kitra V., Traeger-Synodinos J., Theodosaki M., Psarra K., et al. Successful longterm immunologic reconstitution by allogeneic hematopoietic stem cell transplantation cures patients with autosomal dominant hyper-IgE syndrome. J Allergy Clin Immunol 2010; 126: 392.
  33. Nester T.A., Wagnon A.H., Reilly W.F., Spitzer G., Kjeldsberg C.R., Hill H.R. Effects of allogeneic peripheral stem cell transplantation in a patient with Job syndrome of hyperimmunoglobulinemia E and recurrent infections. Am J Med 1998; 105: 162.
  34. Лаберко А.Л., Масчан М.А., Шелихова Л.Н., Скворцова Ю.В., Шипицына И.П., Гутовская Е.И. и др. Опыт применения TCRαβ+ и CD19+ деплеции при неродственных и гаплоидентичных трансплантациях гемопоэтических стволовых клеток у детей с первичными иммунодефицитными состояниями. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2016; 15 (1): 72–80.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Kantulaeva A.K., Kuzmenko N.B., Deripapa E.V., Yukhacheva D.V., Victorova E.A., Burlakov V.I., Shcherbina A.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.