The role of platelets in thromboinftammation
- Authors: Melnikova E.A.1, Emelyanov N.S.2, Nechipurenko D.Y.1,2,3
-
Affiliations:
- Center for Theoretical Problems of Physical and Chemical Pharmacology, Russian Academy of Sciences
- M.V. Lomonosov Moscow State University
- The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
- Issue: Vol 23, No 4 (2024)
- Pages: 152-160
- Section: LITERATURE REVIEW
- Submitted: 11.12.2023
- Accepted: 14.05.2024
- Published: 13.12.2024
- URL: https://hemoncim.com/jour/article/view/788
- DOI: https://doi.org/10.24287/1726-1708-2024-23-4-152-160
- ID: 788
Cite item
Full Text
Abstract
Interactions between platelets, leukocytes and endothelial cells play an important role in various physiological and pathophysiological processes. Although the primary function of platelets is to stop bleeding, recent studies have shed some light on their role in many other processes, mainly, in immune reactions. As the key participants of all inflammatory processes, leukocytes interact both with platelets and endothelial cells linking hemostatic response and local inflammation. In its turn, endothelium is actively involved both in hemostasis regulation and inflammation. In normal conditions, these interactions help fight off pathogens and facilitate the normal process of inflammation and restoration of tissues. However, their dysregulation may result in various disorders including atherosclerosis, thrombosis, inflammation and post-infection complications. In recent years, the development of a wide array of disorders has come to be associated with thromboinflammation and immunothrombosis, whose mechanisms have become the focus of many ongoing studies. In this review, we describe thromboinflammation through its underlying molecular and cell interactions. A better comprehension of the role of platelets in the regulation of inflammatory response will not only improve our understanding of the correlation between hemostatic response and immune reactions but will also help identify new therapeutic targets and strategies for many serious disorders ranging from thrombosis to neurodegenerative diseases.
Keywords
About the authors
E. A. Melnikova
Center for Theoretical Problems of Physical and Chemical Pharmacology, Russian Academy of Sciences
Email: zhukabra_@mail.ru
Moscow
Russian FederationN. S. Emelyanov
M.V. Lomonosov Moscow State University
Moscow
Russian FederationD. Yu. Nechipurenko
Center for Theoretical Problems of Physical and Chemical Pharmacology, Russian Academy of Sciences;M.V. Lomonosov Moscow State University;
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Author for correspondence.
Email: dmitry.nechipurenko@dgoi.ru
Dmitry Yu. Nechipurenko, a leading researcher at the Laboratory of Cellular Hemostasis and Thrombosis at the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of the Russian Federation
1 Samory Mashela St., 117997, Moscow
Russian FederationReferences
- Nieswandt B., Pleines I., Bender M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke //Journal of Thrombosis and Haemostasis. – 2011. – Т. 9. – С. 92-104.
- Martinod K., Deppermann C. Immunothrombosis and thromboinflammation in host defense and disease //Platelets. – 2021. – Т. 32. – №. 3. – С. 314-324.
- Kral J. B. et al. Platelet interaction with innate immune cells //Transfusion Medicine and Hemotherapy. – 2016. – Т. 43. – №. 2. – С. 78-88.
- Jackson S. P., Darbousset R., Schoenwaelder S. M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms //Blood, The Journal of the American Society of Hematology. – 2019. – Т. 133. – №. 9. – С. 906-918.
- Palankar R., Greinacher A. Challenging the concept of immunothrombosis //Blood, The Journal of the American Society of Hematology. – 2019. – Т. 133. – №. 6. – С. 508-509.
- Lindemann S. et al. Platelets, inflammation and atherosclerosis //Journal of thrombosis and haemostasis. – 2007. – Т. 5. – С. 203-211.
- Alexandru N., Popov D., Georgescu A. Platelet dysfunction in vascular pathologies and how can it be treated //Thrombosis research. – 2012. – Т. 129. – №. 2. – С. 116-126.
- Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115(12):3378–3384. doi: 10.1172/JCI27196.
- Gawaz M, Vogel S. Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood. 2013;122(15):2550–2554. doi: 10.1182/blood-2013-05-468694.
- Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014;123(18):2759–2767. doi: 10.1182/blood-2013-11-462432.
- Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(suppl 1):S13–S33.
- Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. The Journal of clinical investigation, 2015. 125(12), 4638–4654. https://doi.org/10.1172/JCI81660
- Schuhmann M. K. et al. Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke //Journal of Neuroinflammation. – 2017. – Т. 14. – №. 1. – С. 1-6.
- Petri B. et al. von Willebrand factor promotes leukocyte extravasation //Blood, The Journal of the American Society of Hematology. – 2010. – Т. 116. – №. 22. – С. 4712-4719.
- Liverani E. et al. The role of P2Y12 receptor and activated platelets during inflammation //Current drug targets. – 2014. – Т. 15. – №. 7. – С. 720-728
- Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA: Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 206:2543-2555, 2009.
- Kanaoka Y., Boyce J. A. Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses //The Journal of Immunology. – 2004. – Т. 173. – №. 3. – С. 1503-1510.
- Liu M. C. et al. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial //Journal of Allergy and Clinical Immunology. – 1996. – Т. 98. – №. 5. – С. 859-871.
- Wenzel S. E. et al. Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge //Am Rev Respir Dis. – 1990. – Т. 142. – №. 1. – С. 112-119.
- Hallstrand T. S., Henderson Jr W. R. An update on the role of leukotrienes in asthma //Current opinion in allergy and clinical immunology. – 2010. – Т. 10. – №. 1. – С. 60.
- Kim D. C. et al. Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation //The Journal of Immunology. – 2006. – Т. 176. – №. 7. – С. 4440-4448.
- Swennen EL, Bast A, Dagnelie PC: Purinergic receptors involved in the immunomodulatory effects of ATP in human blood. Biochem Biophys Res Commun 348:1194-1199, 2006.;
- Thomas M. R. et al. Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model //Arteriosclerosis, Thrombosis, and Vascular Biology. – 2015. – Т. 35. – №. 12. – С. 2562-2570.
- Hagiwara S. et al. Adenosine diphosphate receptor antagonist clopidogrel sulfate attenuates LPS-induced systemic inflammation in a rat model //Shock. – 2011. – Т. 35. – №. 3. – С. 289-292.
- Vallance T. M. et al. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis //Mediators of inflammation. – 2017. – Т. 2017.
- Andonegui G. et al. Platelets express functional Toll-like receptor-4 //Blood. – 2005. – Т. 106. – №. 7. – С. 2417-2423.
- Damien P. et al. LPS stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40-Ligand //BMC immunology. – 2015. – Т. 16. – С. 1-7.
- Clark S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood //Nature medicine. – 2007. – Т. 13. – №. 4. – С. 463-469.
- Amirkhosravi A. et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454 //Thrombosis and haemostasis. – 2003. – Т. 90. – №. 09. – С. 549-554.
- Koupenova M. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis //Blood, The Journal of the American Society of Hematology. – 2014. – Т. 124. – №. 5. – С. 791-802.
- Herter J. M., Rossaint J., Zarbock A. Platelets in inflammation and immunity //Journal of Thrombosis and Haemostasis. – 2014. – Т. 12. – №. 11. – С. 1764-1775.
- Hamilos M., Petousis S., Parthenakis F. Interaction between platelets and endothelium: from pathophysiology to new therapeutic options //Cardiovascular diagnosis and therapy. – 2018. – Т. 8. – №. 5. – С. 568.)
- Elzey B. D. et al. Platelet CD40L at the interface of adaptive immunity //Thrombosis research. – 2011. – Т. 127. – №. 3. – С. 180-183.
- Schleicher R. I. et al. Platelets induce apoptosis via membrane-bound FasL //Blood, The Journal of the American Society of Hematology. – 2015. – Т. 126. – №. 12. – С. 1483-1493.
- Qiao JL, Shen Y, Gardiner EE, Andrews RK. Proteolysis of platelet receptors in humans and other species. Biol Chem. 2010;391(8):893–900.
- Qiao J. et al. NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica vol. 103,9 (2018): 1568-1576. doi: 10.3324/haematol.2018.191700
- Hottz, Eugenio D., et al. "Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation." Blood, The Journal of the American Society of Hematology 122.20 (2013): 3405-3414.
- Murthy, Pranav, et al. "The NLRP3 inflammasome and bruton's tyrosine kinase in platelets co-regulate platelet activation, aggregation, and in vitro thrombus formation." Biochemical and biophysical research communications 483.1 (2017): 230-236.
- Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004 Mar;20(3):319-25. doi: 10.1016/s1074-7613(04)00046-9. PMID: 15030775.
- Willingham, Stephen B., et al. "NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and-independent pathways." The Journal of Immunology 183.3 (2009): 2008-2015.
- Ito, Ayaka, et al. "LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling." elife 4 (2015): e08009.
- Liu, Ting, et al. "NF-κB signaling in inflammation." Signal transduction and targeted therapy 2.1 (2017): 1-9.
- Pennings G. J. et al. Rapid release of interleukin-1β from human platelets is independent of NLRP3 and caspase //Thrombosis and Haemostasis. – 2021. – Т. 122. – №. 04. – С. 517-528.
- Rolfes V. et al. Platelets fuel the inflammasome activation of innate immune cells //Cell reports. – 2020. – Т. 31. – №. 6.
- S. Lindemann, N.D. Tolley, D.A. Dixon, T.M. McIntyre, S.M. Prescott, G.A. Zimmerman, A.S. Weyrich, Activated platelets mediate inflammatory signalling by regulated interleukin 1beta synthesis, J. Cell Biol. 154 (2001) 485e490.
- T. Bergsbaken, S.L. Fink, B.T. Cookson, Pyroptosis: host cell death and inflammation, Nat. Rev. Microbiol. 7 (2009) 99e109.
- C. Antonopoulos, H.M. Russo, C. El Sanadi, B.N. Martin, X. Li, W.J. Kaiser, E.S. Mocarski, G.R. Dubyak, Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling, J. Biol. Chem. 290 (2015) 20167e20184
- Li J. et al. Platelet–neutrophil interactions under thromboinflammatory conditions //Cellular and molecular life sciences. – 2015. – Т. 72. – С. 2627-2643.
- Lisman T. Platelet–neutrophil interactions as drivers of inflammatory and thrombotic disease //Cell and tissue research. – 2018. – Т. 371. – №. 3. – С. 567-576.
- Brinkmann V. et al. Neutrophil extracellular traps kill bacteria //science. – 2004. – Т. 303. – №. 5663. – С. 1532-1535.
- Campos J. et al. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice //Blood advances. – 2021. – Т. 5. – №. 9. – С. 2319-2324.
- Guo L., Rondina M. T. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases //Frontiers in immunology. – 2019. – Т. 10. – С. 2204.
- Rossaint J. et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response //Nature communications. – 2016. – Т. 7. – №. 1. – С. 13464.
- Dib P. R. B. et al. Innate immune receptors in platelets and platelet-leukocyte interactions //Journal of Leucocyte Biology. – 2020. – Т. 108. – №. 4. – С. 1157-1182.
- Cerletti C., de Gaetano G., Lorenzet R. Platelet–leukocyte interactions: multiple links between inflammation, blood coagulation and vascular risk //Mediterranean journal of hematology and infectious diseases. – 2010. – Т. 2. – №. 3.
- Rossaint J., Zarbock A. Platelets in leucocyte recruitment and function //Cardiovascular research. – 2015. – Т. 107. – №. 3. – С. 386-395.
- He P. Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? //Cardiovascular research. – 2010. – Т. 87. – №. 2. – С. 281-290.)
- Hurley S. M. et al. Platelet-dependent neutrophil function is dysregulated by M protein from Streptococcus pyogenes //Infection and immunity. – 2015. – Т. 83. – №. 9. – С. 3515-3525.
- Silverstein R. Type 2 scavenger receptor CD36 in platelet activation: the role of hyperlipemia and oxidative stress //Clinical lipidology. – 2009. – Т. 4. – №. 6. – С. 767-779.
- Kimball A. S. et al. The emerging role of NETs in venous thrombosis and immunothrombosis //Frontiers in immunology. – 2016. – Т. 7. – С. 236.
- Stakos D. A. et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction //European heart journal. – 2015. – Т. 36. – №. 22. – С. 1405-1414.
- Kambas K., Mitroulis I., Ritis K. The emerging role of neutrophils in thrombosis—the journey of TF through NETs //Frontiers in immunology. – 2012. – Т. 3. – С. 385.
- Zhang H. et al. Tissue factor-enriched neutrophil extracellular traps promote immunothrombosis and disease progression in sepsis-induced lung injury //Frontiers in Cellular and Infection Microbiology. – 2021. – Т. 11. – С. 677902.
- Sarma J. V., Ward P. A. The complement system //Cell and tissue research. – 2011. – Т. 343. – №. 1. – С. 227-235.
- Matsushita, M., Endo, Y. & Fujita, T. Structural and Functional Overview of the Lectin Complement Pathway: Its Molecular Basis and Physiological Implication. Arch. Immunol. Ther. Exp. 61, 273–283 (2013).
- Marina Noris, Giuseppe Remuzzi,Overview of Complement Activation and Regulation,Seminars in Nephrology,Volume 33, Issue 6,2013,Pages 479-492,ISSN 0270-9295,
- Subramaniam S. et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development //Blood, The Journal of the American Society of Hematology. – 2017. – Т. 129. – №. 16. – С. 2291-2302.
- Mannes M. et al. Complement and platelets: prothrombotic cell activation requires membrane attack complex–induced release of danger signals //Blood Advances. – 2023. – Т. 7. – №. 20. – С. 6367-6380.
- Sauter R. J. et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis //Circulation. – 2018. – Т. 138. – №. 16. – С. 1720-1735.
- Arbesu I. et al. Platelet‐borne complement proteins and their role in platelet–bacteria interactions //Journal of Thrombosis and Haemostasis. – 2016. – Т. 14. – №. 11. – С. 2241-2252.
- Koupenova M. et al. The role of platelets in mediating a response to human influenza infection //Nature communications. – 2019. – Т. 10. – №. 1. – С. 1780.
- Deshmukh H. et al. Aspergillus-derived galactosaminogalactan triggers complement activation on human platelets //Frontiers in Immunology. – 2020. – Т. 11. – С. 550827.
- Ekdahl K. N., Nilsson B. Phosphorylation of complement component C3 and C3 fragments by a human platelet protein kinase. Inhibition of factor I-mediated cleavage of C3b //Journal of immunology (Baltimore, Md.: 1950). – 1995. – Т. 154. – №. 12. – С. 6502-6510.
- Ekdahl K. N., Nilsson B. Alterations in C3 activation and binding caused by phosphorylation by a casein kinase released from activated human platelets //The Journal of Immunology. – 1999. – Т. 162. – №. 12. – С. 7426-7433.
- Jansen M. P. B., Florquin S., Roelofs J. J. T. H. The role of platelets in acute kidney injury //Nature Reviews Nephrology. – 2018. – Т. 14. – №. 7. – С. 457-471.
- de Cordoba S. R. et al. Genetics of atypical hemolytic uremic syndrome (aHUS) //Seminars in thrombosis and hemostasis. – Thieme Medical Publishers, 2014. – С. 422-430.
- Hyvärinen S., Meri S., Jokiranta T. S. Disturbed sialic acid recognition on endothelial cells and platelets in complement attack causes atypical hemolytic uremic syndrome //Blood, The Journal of the American Society of Hematology. – 2016. – Т. 127. – №. 22. – С. 2701-2710.
- Bessler M. et al. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG‐A gene //The EMBO journal. – 1994. – Т. 13. – №. 1. – С. 110-117.
- Gralnick H. R. et al. Activated platelets in paroxysmal nocturnal haemoglobinuria //British journal of haematology. – 1995. – Т. 91. – №. 3. – С. 697-702.
- Boyce S. et al. The activation of complement and its role in the pathogenesis of thromboembolism //Seminars in Thrombosis and Hemostasis. – Thieme Medical Publishers, 2015. – С. 665-672.
- Nording H., Baron L., Langer H. F. Platelets as therapeutic targets to prevent atherosclerosis //Atherosclerosis. – 2020. – Т. 307. – С. 97-108.
- Huber‐Lang M. S. et al. Complement in trauma—Traumatised complement? //British Journal of Pharmacology. – 2021. – Т. 178. – №. 14. – С. 2863-2879.
- Sang Y. et al. Interplay between platelets and coagulation //Blood reviews. – 2021. – Т. 46. – С. 100733.
- Schmaier A. H. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities //Journal of Thrombosis and Haemostasis. – 2016. – Т. 14. – №. 1. – С. 28-39.
- Kenne E. et al. Neutrophils engage the kallikrein‐kinin system to open up the endothelial barrier in acute inflammation //The FASEB Journal. – 2019. – Т. 33. – №. 2. – С. 2599-2609.
- Verhoef J. J. F. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation //Blood, The Journal of the American Society of Hematology. – 2017. – Т. 129. – №. 12. – С. 1707-1717.
- Bäck J. et al. Activated human platelets induce factor XIIa-mediated contact activation //Biochemical and biophysical research communications. – 2010. – Т. 391. – №. 1. – С. 11-17.
- Denorme F., Campbell R. A. Procoagulant platelets: novel players in thromboinflammation //American Journal of Physiology-Cell Physiology. – 2022. – Т. 323. – №. 4. – С. C951-C958.
- Podoplelova N. A. et al. Procoagulant platelets: mechanisms of generation and action //Hämostaseologie. – 2021. – Т. 41. – №. 02. – С. 146-153.
- Yuan Y. et al. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia //Science Translational Medicine. – 2017. – Т. 9. – №. 409. – С. eaam5861.
- Denorme F. et al. Platelet necrosis mediates ischemic stroke outcome in mice //Blood, The Journal of the American Society of Hematology. – 2020. – Т. 135. – №. 6. – С. 429-440.
- Denorme F. et al. Neutrophil extracellular traps regulate ischemic stroke brain injury //The Journal of Clinical Investigation. – 2022. – Т. 132. – №. 10.
- Kaplan Z. S. et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4 //Nature communications. – 2015. – Т. 6. – №. 1. – С. 7835.
- Kaiser R., Escaig R., Nicolai L. Hemostasis without clot formation–how platelets guard the vasculature in inflammation, infection, and malignancy //Blood. – 2023.
Supplementary files
