Роль тромбоцитов в процессах тромбовоспаления

Обложка

Цитировать

Полный текст

Аннотация

Взаимодействия между тромбоцитами, лейкоцитами и эндотелиальными клетками играют важную роль в различных физиологических и патофизиологических процессах. Хотя основная функция тромбоцитов заключается в остановке кровотечения, исследования последних лет пролили свет на их роль во многих других процессах, главным образом в иммунных реакциях. Лейкоциты как ключевые участники воспалительных процессов активно взаимодействуют как с тромбоцитами, так и с эндотелиальными клетками, тем самым реализуя связь между гемостатическим ответом и локальным воспалением. Эндотелий, в свою очередь, активно участвует как в регуляции гемостаза, так и в воспалительных процессах. В норме эти взаимодействия способствуют борьбе с патогенами, правильному течению воспаления и восстановлению тканей. Однако нарушение их регуляции может приводить к развитию патологий, включая атеросклероз, тромбозы, воспалительные заболевания и осложнения, возникающие вследствие инфекций. В последние годы развитие широкого круга патологий ассоциируется с процессами тромбовоспаления и иммунотромбоза, механизмы которых являются предметом активных исследований. Данный обзор посвящен описанию современной картины тромбовоспаления через соответствующие молекулярные и клеточные взаимодействия, лежащие в его основе. Более глубокое понимание роли тромбоцитов в регуляции воспалительных реакций способно не только улучшить наше понимание взаимосвязи между гемостатическим ответом и иммунными реакциями, но и помочь определить новые терапевтические мишени и стратегии для многих серьезных патологий: от тромбозов до нейродегенеративных заболеваний. 

Об авторах

Е. А. Мельникова

ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН

Email: zhukabra_@mail.ru

Мельникова Евгения А.

Москва

Россия

Н. С. Емельянов

ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»

Москва

Россия

Д. Ю. Нечипуренко

ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН;
ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»;
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России

Автор, ответственный за переписку.
Email: dmitry.nechipurenko@dgoi.ru

Нечипуренко Дмитрий Юрьевич, ведущий научный сотрудник лаборатории клеточного гемостаза и тромбоза ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева» Минздрава России

117997, Москва, ул. Саморы Машела, 1

Россия

Список литературы

  1. Nieswandt B., Pleines I., Bender M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 2011; 9: 92–104.
  2. Martinod K., Deppermann C. Immunothrombosis and thromboinflammation in host defense and disease. Platelets 2021; 32 (3): 314–24.
  3. Kral J.B., Schrottmaier W.C., Salzmann M., Assinger A. Platelet interaction with innate immune cells. Transfus Med Hemother 2016; 43 (2): 78–88.
  4. Jackson S.P., Darbousset R., Schoenwaelder S.M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133 (9): 906–18.
  5. Palankar R., Greinacher A. Challenging the concept of immunothrombosis. Blood 2019; 133 (6): 508–9.
  6. Lindemann S., Krämer B., Seizer P., Gawaz M. Platelets, inflammation and atherosclerosis. J Thromb Haemost 2007; 5: 203–11.
  7. Alexandru N., Popov D., Georgescu A. Platelet dysfunction in vascular pathologies and how can it be treated. Thromb Res 2012; 129 (2): 116–26.
  8. Gawaz M., Langer H., May A.E. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12): 3378–84. doi: 10.1172/JCI27196
  9. Gawaz M., Vogel S. Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood 2013; 122 (15): 2550–4. doi: 10.1182/blood-2013-05-468694
  10. Morrell C.N., Aggrey A.A., Chapman L.M., Modjeski K.L. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123 (18): 2759–67. doi: 10.1182/blood2013-11-462432
  11. Nurden A.T. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105 (suppl 1): S13– 33.
  12. Vogel S., Bodenstein R., Chen Q., Feil S., Feil R., Rheinlaender J., et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125 (12): 4638–54. doi: 10.1172/JCI81660
  13. Schuhmann M.K., Guthmann J., Stoll G., Nieswandt B., Kraft P., Kleinschnitz C. Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke. J Neuroinflammation 2017; 14 (1): 18.
  14. Petri B., Broermann A., Li H., Khandoga A.G., Zarbock A., Krombach F., et al. von Willebrand factor promotes leukocyte extravasation. Blood 2010; 116 (22): 4712–9.
  15. Liverani E., Kilpatrick L.E., Tsygankov A.Y., Kunapuli S.P. The role of P2Y12 receptor and activated platelets during inflammation. Curr Drug Targets 2014; 15 (7): 720–8.
  16. Paruchuri S., Tashimo H., Feng C., Maekawa A., Xing W., Jiang Y., et al. Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 2009; 206: 2543–55.
  17. Kanaoka Y., Boyce J.A. Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. J Immunol 2004; 173 (3): 1503–10.
  18. Liu M.C., Dubé L.M., Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. J Allergy Clin Immunol 1996; 98 (5): 859–71.
  19. Wenzel S.E., Larsen G.L., Johnston K., Voelkel N.F., Westcott J.Y. Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am Rev Respir Dis 1990; 142 (1): 112–9.
  20. Hallstrand T.S., Henderson W.R. Jr. An update on the role of leukotrienes in asthma. Curr Opin Allergy Clin Immunol 2010; 10 (1): 60.
  21. Kim D.C., Ida Hsu F., Barrett N.A., Friend D.S., Grenningloh R., Ho I-C., et al. Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation. J Immunol 2006; 176 (7): 4440–8.
  22. Swennen E.L., Bast A., Dagnelie P.C. Purinergic receptors involved in the immunomodulatory effects of ATP in human blood. Biochem Biophys Res Commun 2006; 348: 1194–9.
  23. Thomas M.R., Outteridge S.N., Ajjan R.A., Phoenix F., Sangha G.K., Faulkner R.E., et al. Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model. Arterioscler Thromb Vasc Biol 2015; 35 (12): 2562–70.
  24. Hagiwara S., Iwasaka H., Hasegawa A., Oyama M., Imatomi R., Uchida T., Noguchi T. Adenosine diphosphate receptor antagonist clopidogrel sulfate attenuates LPS-induced systemic inflammation in a rat model. Shock 2011; 35 (3): 289–92.
  25. Vallance T.M., Zeuner M.-T., Williams H.F., Widera D., Vaiyapuri S. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis. Mediators Inflamma 2017; 2017: 9605894.
  26. Andonegui G., Kerfoot S.M., McNagny K., Ebbert K.V.J., Patel K.D., Kubes P. Platelets express functional Toll-like receptor-4. Blood 2005; 106 (7): 2417–23.
  27. Damien P., Cognasse F., Eyraud M.-A., Arthaud C.-A., Pozzetto B., Garraud O., Hamzeh-Cognasse H. LPS stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40-Ligand. BMC Immunol 2015; 16 (1): 3.
  28. Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (4): 463–9.
  29. Amirkhosravi A., Mousa S.A., Amaya M., Blaydes S., Desai H., Meyer T., Francis J.L. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost 2003; 90 (3): 549–54.
  30. Koupenova M., Vitseva O., MacKay C.R., Beaulieu L.M., Benjamin E.J., Mick E., et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014; 124 (5): 791–802.
  31. Herter J.M., Rossaint J., Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12 (11): 1764–75.
  32. Hamilos M., Petousis S., Parthenakis F. Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovascr Diagn Ther 2018; 8 (5): 568–80.
  33. Elzey B.D., Ratliff T.L., Sowa J.M., Crist S.A. Platelet CD40L at the interface of adaptive immunity. Thromb Res 2011; 127 (3): 180–3.
  34. Schleicher R.I., Reichenbach F., Kraft P., Kumar A., Lescan M., Todt F., et al. Platelets induce apoptosis via membrane-bound FasL. Blood 2015; 126 (12): 1483–93.
  35. Qiao J.L., Shen Y., Gardiner E.E., Andrews R.K. Proteolysis of platelet receptors in humans and other species. Biol Chem 2010; 391 (8): 893– 900.
  36. Qiao J., Wu X., Luo Q., Wei G., Xu M., Wu Y., et al. NLRP3 regulates platelet integrin aIIbb3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica 2018; 103 (9): 1568–76. doi: 10.3324/haematol.2018.191700
  37. Hottz E.D., Lopes J.F., Freitas C., Valls-de-Souza R., Oliveira M.F., Bozza M.T., et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013; 122 (20): 3405–14.
  38. Murthy P., Durco F., Miller-Ocuin J.L., Takedai T., Shankar S., Liang X., et al. The NLRP3 inflammasome and bruton's tyrosine kinase in platelets co-regulate platelet activation, aggregation, and in vitro thrombus formation. Biochem Biophys Res Commun 2017; 483 (1): 230–6.
  39. Agostini L., Martinon F., Burns K., McDermott M.F., Hawkins P.N., Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004; 20 (3): 319–25. doi: 10.1016/s1074-7613(04)00046-9
  40. Willingham S.B., Allen I.C., Bergstralh D.T., June Brickey W., Huang M.T.H., Taxman D.J., et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and-independent pathways. J Immunol 2009; 183 (3): 2008–15.
  41. Ito A., Hong C., Rong X., Zhu X., Tarling E.J., Hedde P.N., et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife 2015; 4: e08009.
  42. Liu T., Zhang L., Joo D., Sun S.-C. NF-kB signaling in inflammation. Signal Transduct Target Ther 2017; 2 (1): 1–9.
  43. Pennings G.J., Reddel C.J., Traini M., Lam M., Kockx M., Chen V.M., Kritharides L. Rapid release of interleukin-1b from human platelets is independent of NLRP3 and caspase. Thromb Haemost 2021; 122 (4): 517–28.
  44. Rolfes V., Secchim Ribeiro L., Hawwari I., Böttcher L., Rosero N., Maasewerd S., et al. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep 2020; 31 (6): 107615.
  45. Lindemann S., Tolley N.D., Dixon D.A., McIntyre T.M., Prescott S.M., Zimmerman G.A., Weyrich A.S. Activated platelets mediate inflammatory signalling by regulated interleukin 1beta synthesis. J Cell Biol 2001; 154 (3): 485–90.
  46. Bergsbaken T., Fink S.L., Cookson B.T. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7: 99–109.
  47. Antonopoulos C., Russo H.M., El Sanadi C., Martin B.N., Li X., Kaiser W.J., et al. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling. J Biol Chem 2015; 290: 20167–84.
  48. Li J., Kim K., Barazia A., Tseng A., Cho J. Platelet–neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72: 2627–43.
  49. Lisman T. Platelet–neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res 2018; 371 (3): 567–76.
  50. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532–5.
  51. Campos J., Ponomaryov T., De Prendergast A., Whitworth K., Smith C.W., Khan A.O., et al. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv 2021; 5 (9): 2319–24.
  52. Guo L., Rondina M.T. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol 2019; 10: 2204.
  53. Rossaint J., Kühne K., Skupski J., Van Aken H., Looney M.R., Hidalgo A., Zarbock A. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun 2016; 7 (1): 13464.
  54. Dib P.R.B., Quirino-Teixeira A.C., Botelho M.L., Brandi Mendonça Pinheiro M., Rozini S.V., Brandi Andrade F., Damaceno Hottz E. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leuc Biol 2020; 108 (4): 1157–82.
  55. Cerletti C., de Gaetano G., Lorenzet R. Platelet–leukocyte interactions: multiple links between inflammation, blood coagulation and vascular risk. Mediterr J Hematol Infect Dis 2010; 2 (3): e2010023.
  56. Rossaint J., Zarbock A. Platelets in leucocyte recruitment and function. Cardiovasc Res 2015; 107 (3): 386–95.
  57. He P. Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc Res 2010; 87 (2): 281–90.
  58. Hurley S.M., Kahn F., Nordenfelt P., Mörgelin M., Sørensen O.E., Shannon O. Platelet-dependent neutrophil function is dysregulated by M protein from Streptococcus pyogenes. Infect Immunity 2015; 83 (9): 3515–25.
  59. Silverstein R. Type 2 scavenger receptor CD36 in platelet activation: the role of hyperlipemia and oxidative stress. Clin Lipidol 2009; 4 (6): 767–79.
  60. Kimball A.S., Obi A.T., Diaz J.A., Henke P.K. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol 2016; 7: 236.
  61. Stakos D.A., Kambas K., Konstantinidis T., Mitroulis I., Apostolidou E., Arelaki S., et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 2015; 36 (22): 1405–14.
  62. Kambas K., Mitroulis I., Ritis K. The emerging role of neutrophils in thrombosis – the journey of TF through NETs. Front Immunol 2012; 3: 385.
  63. Zhang H., Zhou Y., Qu M., Yu Y., Chen Z., Zhu S., et al. Tissue factor-enriched neutrophil extracellular traps promote immunothrombosis and disease progression in sepsis-induced lung injury. Front Cell Infect Microbiol 2021; 11: 677902.
  64. Sarma J.V., Ward P.A. The complement system. Cell Tissue Res 2011; 343 (1): 227–35.
  65. Noris M., Remuzzi G. Overview of Complement Activation and Regulation. Semin Nephrol 2013; 33 (Issue 6): 479–92.
  66. Matsushita M., Endo Y., Fujita T. Structural and Functional Overview of the Lectin Complement Pathway: Its Molecular Basis and Physiological Implication. Arch Immunol Ther Exp 2013; 61: 273–83.
  67. Subramaniam S., Jurk K., Hobohm L., Jäckel S., Saffarzadeh M., Schwierczek K., et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 2017; 129 (16): 2291–302.
  68. Mannes M., Pechtl V., Hafner S., Dopler A., Eriksson O., Anand Manivel V., et al. Complement and platelets: prothrombotic cell activation requires membrane attack complex-induced release of danger signals. Blood Adv 2023; 7 (20): 6367–80.
  69. Sauter R.J., Sauter M., Reis E.S., Emschermann F.N., Nording H., Ebenhöch S., et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis. Circulation 2018; 138 (16): 1720–35.
  70. Arbesu I., Bucsaiova M., Fischer M.B., Mannhalter C. Platelet‐borne complement proteins and their role in platelet–bacteria interactions. J Thromb Haemost 2016; 14 (11): 2241–52.
  71. Koupenova M., Corkrey H.A., Vitseva O., Manni G., Pang C.J., Clancy L., et al. The role of platelets in mediating a response to human influenza infection. Nat Commun 2019; 10 (1): 1780.
  72. Deshmukh H., Speth C., Sheppard D.C., Neurauter M., Würzner R., Lass-Flörl C., Rambach G. Aspergillus-derived galactosaminogalactan triggers complement activation on human platelets. Front Immunol 2020; 11: 550827.
  73. Ekdahl K.N., Nilsson B. Phosphorylation of complement component C3 and C3 fragments by a human platelet protein kinase. Inhibition of factor I-mediated cleavage of C3b. J Immunol 1995; 154 (12): 6502–10.
  74. Ekdahl K.N., Nilsson B. Alterations in C3 activation and binding caused by phosphorylation by a casein kinase released from activated human platelets. J Immunol 1999; 162 (12): 7426–33.
  75. Jansen M.P.B., Florquin S., Roelofs J.J.T.H. The role of platelets in acute kidney injury. Nat Rev Nephrol 2018; 14 (7): 457–71.
  76. de Cordoba S.R., Subías Hidalgo M., Pinto S., Tortajada A. Genetics of atypical hemolytic uremic syndrome (aHUS). Semin Thromb Hemost 2014; 40 (4): 422–30.
  77. Hyvärinen S., Meri S., Jokiranta T.S. Disturbed sialic acid recognition on endothelial cells and platelets in complement attack causes atypical hemolytic uremic syndrome. Blood 2016; 127 (22): 2701–10.
  78. Bessler M., Mason P.J., Hillmen P., Miyata T., Yamada N., Takeda J., et al. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG‐A gene. EMBO J 1994; 13 (1): 110–7.
  79. Gralnick H.R., Vail M., McKeown L.P., Merryman P., Wilson O., Chu I., Kimball J., et al. Activated platelets in paroxysmal nocturnal haemoglobinuria. Br J Haematol 1995; 91 (3): 697–702.
  80. Boyce S. Eren E., Lwaleed B.A., Kazmi R.S. The activation of complement and its role in the pathogenesis of thromboembolism. Semin Thromb Hemost 2015; 41 (6): 665– 72.
  81. Nording H., Baron L., Langer H.F. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307: 97–108.
  82. Huber‐Lang M.S., Ignatius A., Köhl J., Mannes M., Braun C.K. Complement in trauma – Traumatised complement? Br J Pharmacol 2021; 178 (14): 2863–79.
  83. Sang Y., Roest M., de Laat B., de Groot P.G., Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46: 100733.
  84. Schmaier A.H. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14 (1): 28–39.
  85. Kenne E., Rasmuson J., Renné T., Vieira M.L., Müller-Esterl W., Herwald H., Lindbom L. Neutrophils engage the kallikrein‐kinin system to open up the endothelial barrier in acute inflammation. FASEB J 2019; 33 (2): 2599–609.
  86. Verhoef J.J.F., Barendrecht A.D., Nickel K.F., Dijkxhoorn K., Kenne E., Labberton L., et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood 2017; 129 (12): 1707–17.
  87. Bäck J., Sanchez J., Elgue G., Nilsson Ekdahl K., Nilsson B. Activated human platelets induce factor XIIa-mediated contact activation. Biochem Biophys Res Commun 2010; 391 (1): 11–7.
  88. Denorme F., Campbell R.A. Procoagulant platelets: novel players in thromboinflammation. Am J Physiol Cell Physiol 2022; 323 (4): 951–8.
  89. Podoplelova N.A., Nechipurenko D.Y., Ignatova A.A., Sveshnikova A.N., Panteleev M.A. Procoagulant platelets: mechanisms of generation and action. Hämostaseologie 2021; 41 (02): 146–53.
  90. Yuan Y., Alwis I., Wu Mike C.L., Kaplan Z., Ashworth K., Bark D. Jr, et al. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci Transl Med 2017; 9 (409): eaam5861.
  91. Denorme F., Kanth Manne B., Portier I., Eustes A.S., Kosaka Y., Kile B.T., et al. Platelet necrosis mediates ischemic stroke outcome in mice. Blood 2020; 135 (6): 429–40.
  92. Denorme F., Portier I., Rustad J.L., Cody M.J., de Araujo C.V., Hoki C., et al. Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 2022; 132 (10): e154225.
  93. Kaplan Z.S., Zarpellon A., Alwis I., Yuan Y., McFadyen J., Ghasemzadeh M., et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015; 6 (1): 7835.
  94. Kaiser R., Escaig R., Nicolai L. Hemostasis without clot formation: how platelets guard the vasculature in inflammation, infection, and malignancy. Blood 2023.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Мельникова Е.А., Емельянов Н.С., Нечипуренко Д.Ю., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.