Molecular pathogenesis of T-lymphoblastic lymphoma
- Authors: Dneprovskii V.R.1, Fedorova A.S.1, Abramov D.S.1, Volchkov E.V.1,2, Myakova N.V.1
-
Affiliations:
- The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthсare of the Russian Federation
- Research Institute of Molecular and Cellular Medicine of the Patrice Lumumba Рeoples’ Friendship University of Russia
- Issue: Vol 23, No 1 (2024)
- Pages: 172-179
- Section: LITERATURE REVIEW
- Submitted: 31.01.2024
- Accepted: 08.04.2024
- Published: 08.04.2024
- URL: https://hemoncim.com/jour/article/view/816
- DOI: https://doi.org/10.24287/1726-1708-2024-23-1-172-179
- ID: 816
Cite item
Full Text
Abstract
T-lymphoblastic lymphoma (T-LBL) is one of the most common non-Hodgkin lymphomas in children. According to the 2022 WHO classification, T-LBL and acute T-lymphoblastic leukemia are considered as a single disease since they both have T-cell precursors as a morphological substrate. In recent years, some progress has been made in the treatment of this disease, but the prognosis for relapses and refractory cases remains extremely unfavorable. One of the promising areas that can increase the effectiveness of therapy is the use of new treatment approaches that consider the molecular and biological features of this tumor. This review examines in detail the molecular aspects of the pathogenesis of T-LBL.
About the authors
V. R. Dneprovskii
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthсare of the Russian Federation
Email: dneprovsky.vladimir@mail.ru
ORCID iD: 0009-0002-3896-6612
Moscow
Russian FederationA. S. Fedorova
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthсare of the Russian Federation
Email: fyodorova_hannah@mail.ru
ORCID iD: 0000-0002-4699-1730
Moscow
Russian FederationD. S. Abramov
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthсare of the Russian Federation
Email: abramovd_s@bk.ru
ORCID iD: 0000-0003-3664-2876
Moscow
Russian FederationE. V. Volchkov
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthсare of the Russian Federation; Research Institute of Molecular and Cellular Medicine of the Patrice Lumumba Рeoples’ Friendship University of Russia
Author for correspondence.
Email: volchcov.egor@yandex.ru
ORCID iD: 0000-0002-2574-1636
Egor V. Volchkov, a hematologist
Lymphoma Research Department
117997; 1 Samory Mashela St.; Moscow
Russian FederationN. V. Myakova
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthсare of the Russian Federation
Email: nmiakova@mail.ru
ORCID iD: 0000-0002-4779-1896
Moscow
Russian FederationReferences
- Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B. de O., Berti E., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36 (7): 1720–48. doi: 10.1038/S41375-022-01620-2
- Bassan R., Maino E., Cortelazzo S. Lymphoblastic lymphoma: An updated review on biology, diagnosis, and treatment. Eur J Haematol 2016; 96 (5): 447–60. doi: 10.1111/EJH.12722
- Burkhardt B., Zimmermann M., Oschlies I., Niggli F., Mann G., Parwaresch R., et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol 2005; 131 (1): 39–49. doi: 10.1111/J.1365-2141.2005.05735.X
- van der Zwet J.C.G., Cordo’ V., Canté-Barrett K., Meijerink J.P.P. Multiomic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74: 100647. doi: 10.1016/J.JBIOR.2019.100647
- Kroeze E., Loeffen J.L.C., Poort V.M., Meijerink J.P.P. T-cell lymphoblastic lymphoma and leukemia: different diseases from a common premalignant progenitor? Blood Adv 2020; 4 (14): 3466–73. doi: 10.1182/BLOODADVANCES.2020001822
- Tasian S.K., Loh M.L., Hunger S.P. Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer 2015; 121 (20): 3577–90. doi: 10.1002/CNCR.29573
- van Vlierberghe P., Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122 (10): 3398–406. doi: 10.1172/JCI61269
- Soulier J., Clappier E., Cayuela J.M., Regnault A., García-Peydró M., Dombret H., et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106 (1): 274–86. doi: 10.1182/BLOOD-2004-10-3900
- Sanda T., Leong W.Z. TAL1 as a master oncogenic transcription factor in T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53: 7–15. doi: 10.1016/J.EXPHEM.2017.06.001
- Kraszewska M.D., Dawidowska M., Szczepański T., Witt M. T-cell acute lymphoblastic leukaemia: recent molecular biology findings. Br J Haematol 2012; 156 (3): 303–15. doi: 10.1111/J.1365-2141.2011.08957.X
- Bardelli V., Arniani S., Pierini V., Di Giacomo D., Pierini T., Gorello P. et al. T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12 (8): 1118. doi: 10.3390/GENES12081118
- Bonn B.R., Rohde M., Zimmermann M., Krieger D., Oschlies I., Niggli F., et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood 2013; 121 (16): 3153–60. doi: 10.1182/BLOOD-2012-12-474148
- Sinclair P.B., Sorour A., Martineau M., Harrison C.J., Mitchell W.A., O’Neill E., et al. A fluorescence in situ hybridization map of 6q deletions in acute lymphocytic leukemia: identification and analysis of a candidate tumor suppressor gene. Cancer Res 2004; 64 (12): 4089–98. doi: 10.1158/0008-5472.CAN-03-1871
- Burkhardt B., Moericke A., Klapper W., Greene F., Salzburg J., Damm-Welk C., et al. Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: Differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma 2008; 49 (3): 451–61. doi: 10.1080/10428190701824551
- Carrasco Salas P., Fernández L., Vela M., Bueno D., González B., Valentín J., et al. The role of CDKN2A/B deletions in pediatric acute lymphoblastic leukemia. Pediatr Hematol Oncol 2016; 33 (7–8): 415–22. doi: 10.1080/08880018.2016.1251518
- Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development. Science 1999; 284 (5415): 770–6. doi: 10.1126/SCIENCE.284.5415.770
- Deftos M.L., Bevan M.J. Notch signaling in T cell development. Curr Opin Immunol 2000; 12 (2): 166–72. doi: 10.1016/S0952-7915(99)00067-9
- Sanchez-Irizarry C., Carpenter A.C., Weng A.P., Pear W.S., Aster J.C., Blacklow S.C. Notch Subunit Heterodimerization and Prevention of Ligand-Independent Proteolytic Activation Depend, Respectively, on a Novel Domain and the LNR Repeats. Mol Cell Biol 2004; 24 (21): 9265. doi: 10.1128/MCB.24.21.9265-9273.2004
- Kopan R., Ilagan M.X.G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 2009; 137 (2): 216. doi: 10.1016/J.CELL.2009.03.045
- Bettenhausen B., Hrabe de Angelis M., Simon D., Guenet J.L., Gossler A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 1995; 121 (8): 2407–18. doi: 10.1242/DEV.121.8.2407
- Dunwoodie S.L., Henrique D., Harrison S.M., Beddington R.S.P. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 1997; 124 (16): 3065–76. doi: 10.1242/DEV.124.16.3065
- Shutter J.R., Scully S., Fan W., Richards W.G., Kitajewski J., Deblandre G.A. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000; 14 (11): 1313. doi: 10.1101/gad.14.11.1313
- Lindsell C.E., Shawber C.J., Boulter J., Weinmaster G. Jagged: a mammalian ligand that activates Notch1. Cell 1995; 80 (6): 909–17. doi: 10.1016/0092-8674(95)90294-5
- Shawber C., Boulter J., Lindsell C.E., Weinmaster G. Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev Biol 1996; 180 (1): 370–6. doi: 10.1006/DBIO.1996.0310
- Nam Y., Sliz P., Song L., Aster J.C., Blacklow S.C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 2006; 124 (5): 973–83. doi: 10.1016/J.CELL.2005.12.037
- Wu L., Sun T., Kobayashi K., Gao P., Griffin J.D. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 2002; 22 (21): 7688–00. doi: 10.1128/MCB.22.21.7688-7700.2002
- Kurooka H., Honjo T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 2000; 275 (22): 17211–20. doi: 10.1074/JBC.M000909200
- Jarriault S., Brou C., Logeat F., Schroeter E.H., Kopan R., Israel A. Signalling downstream of activated mammalian Notch. Nature 1995; 377 (6547): 355–8. doi: 10.1038/377355A0
- Weng A.P., Millholland J.M., Yashiro-Ohtani Y., Arcangeli M.L., Lau A., Wai C., et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20 (15): 2096–109. doi: 10.1101/GAD.1450406
- Rangarajan A., Talora C., Okuyama R., Nicolas M., Mammucari C., Oh H. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20 (13): 3427–36. doi: 10.1093/EMBOJ/20.13.3427
- Ronchini C., Capobianco A.J. Induction of Cyclin D1 Transcription and CDK2 Activity by Notchic: Implication for Cell Cycle Disruption in Transformation by Notchic. Mol Cell Biol 2001; 21 (17): 5925. doi: 10.1128/MCB.21.17.5925-5934.2001
- Adler S.H., Chiffoleau E., Xu L., Dalton N.M., Burg J.M., Wells A.D., et al. Notch signaling augments T cell responsiveness by enhancing CD25 expression. J Immunol 2003; 171 (6): 2896–903. doi: 10.4049/JIMMUNOL.171.6.2896
- Fang T.C., Yashiro-Ohtani Y., Del Bianco C., Knoblock D.M., Blacklow S.C., Pear W.S. Notch Directly Regulates Gata3 Expression during T Helper 2 Cell Differentiation. Immunity 2007; 27 (1): 100. doi: 10.1016/J.IMMUNI.2007.04.018
- Reizis B., Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 2002; 16 (3): 295–300. doi: 10.1101/gad.960702
- Malecki M.J., Sanchez-Irizarry C., Mitchell J.L., Histen G., Xu M.L., Aster J.C., et al. Leukemia-Associated Mutations within the NOTCH1 Heterodimerization Domain Fall into at Least Two Distinct Mechanistic Classes. Mol Cell Biol 2006; 26 (12): 4642. doi: 10.1128/MCB.01655-05
- Weng A.P., Ferrando A.A., Lee W., Morris IV J.P., Silverman L.B., Sanchez-Irizarry C., et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306 (5694): 269–71. doi: 10.1126/SCIENCE.1102160
- Welcker M., Clurman B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8 (2): 83–93. doi: 10.1038/NRC2290
- Chang B., Partha S., Hofmann K., Lei M., Goebl M., Harper J.W., et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86 (2): 263–74. doi: 10.1016/S0092-8674(00)80098-7
- Hao B., Oehlmann S., Sowa M.E., Harper J.W., Pavletich N.P. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 2007; 26 (1): 131–43. doi: 10.1016/J.MOLCEL.2007.02.022
- Park M.J., Taki T., Oda M., Watanabe T., Yumura-Yagi K., Kobayashi R., et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol 2009; 145 (2): 198–206. doi: 10.1111/J.1365-2141.2009.07607.X
- Öberg C., Li J., Pauley A., Wolf E., Gurney M., Lendahl U. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 2001; 276 (38): 35847–53. doi: 10.1074/JBC.M103992200
- Yada M., Hatakeyama S., Kamura T., Nishiyama M., Tsunematsu R., Imaki H., et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23 (10): 2116–25. doi: 10.1038/SJ.EMBOJ.7600217
- Kanei-Ishii C., Nomura T., Takagi T., Watanabe N., Nakayama K.I., Ishii S. Fbxw7 Acts as an E3 Ubiquitin Ligase That Targets c-Myb for Nemo-like Kinase (NLK)-induced Degradation. J Biol Chem 2008; 283 (45): 30540. doi: 10.1074/jbc.M804340200
- Wei W., Jin J., Schlisio S., Harper J.W., Kaelin W.G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8 (1): 25–33. doi: 10.1016/J.CCR.2005.06.005
- Mao J.H., Kim I.J., Wu D., Climent J., Hio C.K., DelRosario R., et al. FBXW7 Targets mTOR for Degradation and Genetically Cooperates with PTEN in Tumor Suppression. Science 2008; 321 (5895): 1499. doi: 10.1126/SCIENCE.1162981
- Anand S., Penrhyn-Lowe S., Venkitaraman A.R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003; 3 (1): 51–62. doi: 10.1016/S1535-6108(02)00235-0
- Li J., Pauley A.M., Myers R.L., Shuang R., Brashler J.R., Yan R., et al. SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem 2002; 82 (6): 1540–8. doi: 10.1046/J.1471-4159.2002.01105.X
- Koepp D.M., Schaefer L.K., Ye X., Keyomarsi K., Chu C., Harper J.W., et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 2001; 294 (5540): 173–7. doi: 10.1126/SCIENCE.1065203
- Crusio K.M., King B., Reavie L.B., Aifantis I. The ubiquitous nature of cancer: the role of the SCFFbw7 complex in development and transformation. Oncogene 2010; 29 (35): 4865. doi: 10.1038/ONC.2010.222
- Lee Y.R., Chen M., Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19 (9): 547–62. doi: 10.1038/S41580-018-0015-0
- Lee J.O., Yang H., Georgescu M.M., Di Cristofano A., Maehama T., Shi Y., et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 1999; 99 (3): 323–34. doi: 10.1016/S0092-8674(00)81663-3
- Stambolic V., Suzuki A., De la Pompa J.L., Brothers G.M., Mirtsos C., Sasaki T., et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95 (1): 29–39. doi: 10.1016/S0092-8674(00)81780-8
- Kane L.P., Murter B. Control of T lymphocyte fate decisions by PI3K signaling. F1000Research 2020; 9: F1000. doi: 10.12688/F1000RESEARCH.26928.1
- Boomer J.S., Green J.M. An Enigmatic Tail of CD28 Signaling. Cold Spring Harb Perspect Biol 2010; 2 (8): a002436. doi: 10.1101/CSHPERSPECT.A002436
- Tran H., Brunet A., Griffith E.C., Greenberg M.E. The many forks in FOXO’s road. Sci STKE 2003; 2003 (172): RE5. doi: 10.1126/STKE.2003.172.RE5
- Dijkers P.F., Birkenkamp K.U., Lam E.W.F., Shaun B Thomas N., Lammers J.W.J., Koenderman L., et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 2002; 156 (3): 531–42. doi: 10.1083/JCB.200108084
- Shin I., Yakes F.M., Rojo F., Shin N.-Y., Bakin A.V., Baselga J., et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8 (10): 1145–52. doi: 10.1038/NM759
- Datta S.R., Dudek H., Xu T., Masters S., Haian F., Gotoh Y., et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91 (2): 231–41. doi: 10.1016/S0092-8674(00)80405-5
- Cross D.A.E., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378 (6559): 785–9. doi: 10.1038/378785A0
- Diehl J.A., Cheng M., Roussel M.F., Sherr C.J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12 (22): 3499–511. doi: 10.1101/GAD.12.22.3499
- Yeh E., Cunningham M., Arnold H., Chasse D., Monteith T., Ivaldi G., et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 2004; 6 (4): 308–18. doi: 10.1038/NCB1110
- Mayo L.D., Donner D.B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001; 98 (20): 11598–603. doi: 10.1073/PNAS.181181198
- Huang J., Manning B.D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 2009; 37 (Pt 1): 217–22. doi: 10.1042/BST0370217
- Khanam T., Sandmann S., Seggewiss J., Ruether C., Zimmermann M., Norvil A.B., et al. Integrative genomic analysis of pediatric T-cell lymphoblastic lymphoma reveals candidates of clinical significance. Blood 2021; 137 (17): 2347–59. doi: 10.1182/BLOOD.2020005381
- Zuurbier L., Petricoin E.F., Vuerhard M.J., Calvert V., Kooi C., Buijs-Gladdines J.G.C.A.M., et al. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica 2012; 97 (9): 1405. doi: 10.3324/HAEMATOL.2011.059030
- Balbach S.T., Makarova O., Bonn B.R., Zimmermann M., Oschlies I., Klapper W., et al. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia 2016; 30 (4): 970–3. doi: 10.1038/LEU.2015.203
- Peschon J.J., Morrissey P.J., Grabstein K.H., Ramsdell F.J., Maraskovsky E., Gliniak B.C., et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180 (5): 1955–60. doi: 10.1084/JEM.180.5.1955
- Chen D., Tang T.X., Deng H., Yang X.P., Tang Z.H. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12: 747324. doi: 10.3389/FIMMU.2021.747324
- Wang C., Kong L., Kim S., Lee S., Oh S., Jo S., et al. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int J Mol Sci 2022; 23 (18): 10412. doi: 10.3390/IJMS231810412
- Li Z., Song Y., Zhang Y., Li C., Wang Y., Xue W., et al. Genomic and outcome analysis of adult T-cell lymphoblastic lymphoma. Haematologica 2020; 105 (3): e107. doi: 10.3324/HAEMATOL.2019.220863
- Zenatti P.P., Ribeiro D., Li W., Zuurbier L., Silva M.C., Paganin M., et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43 (10): 932–41. doi: 10.1038/NG.924
- Shochat C., Tal N., Gryshkova V., Birger Y., Bandapalli O.R., Cazzaniga G., et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 2014; 124 (1): 106–10. doi: 10.1182/BLOOD-2013-10-529685
- Canté-Barrett K., Spijkers-Hagelstein J.A.P., Buijs-Gladdines J.G.C.A.M., Uitdehaag J.C.M., Smits W.K., Van Der Zwet J., et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30 (9): 1832–43. doi: 10.1038/LEU.2016.83
- Eisa Y.A., Guo Y., Yang F.C. The Role of PHF6 in Hematopoiesis and Hematologic Malignancies. Stem cell Rev reports 2023; 19 (1): 67–75. doi: 10.1007/S12015-022-10447-4
- Feliciano Y.M.S., Bartlebaugh J.M.E., Liu Y., Rivera F.J.S., Bhutkar A., Weintraub A.S., et al. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev 2017; 31 (10): 973–89. doi: 10.1101/GAD.295857.117
- Oh S., Boo K., Kim J., Baek S.A., Jeon Y., You J., et al. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Res 2020; 48 (16): 9037–52. doi: 10.1093/NAR/GKAA626
- Warmerdam D.O., Alonso‐de Vega I., Wiegant W.W., van den Broek B., Rother M.B., Wolthuis R.M., et al. PHF6 promotes non-homologous end joining and G2 checkpoint recovery. EMBO Rep 2020; 21 (1): e48460. doi: 10.15252/EMBR.201948460
- Todd M.A.M., Picketts D.J. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. J Proteome Res 2012; 11 (8): 4326–37. doi: 10.1021/PR3004369
- Liu Z., Li F., Ruan K., Zhang J., Mei Y., Wu J., et al. Structural and functional insights into the human Börjeson-Forssman-Lehmann syndrome-associated protein PHF6. J Biol Chem 2014; 289 (14): 10069–83. doi: 10.1074/JBC.M113.535351
- Wang J., Leung J.W.C., Gong Z., Feng L., Shi X., Chen J. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem 2013; 288 (5): 3174–83. doi: 10.1074/JBC.M112.414839
- van Vlierberghe P., Palomero T., Khiabanian H., Van Der Meulen J., Castillo M., Van Roy N., et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 2010; 42 (4): 338–42. doi: 10.1038/NG.542
- Mori T., Nagata Y., Makishima H., Sanada M., Shiozawa Y., Kon A., et al. Somatic PHF6 mutations in 1760 cases with various myeloid neoplasms. Leukemia 2016; 30 (11): 2270–3. doi: 10.1038/LEU.2016.212
- Miyagi S., Sroczynska P., Kato Y., Nakajima-Takagi Y., Oshima M., Rizq O., et al. The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood 2019; 133 (23): 2495–506. doi: 10.1182/BLOOD.2019000468
- Yeh T.C., Liang D.C., Liu H.C., Jaing T.H., Chen S.H., Hou J.Y., et al. Clinical and biological relevance of genetic alterations in pediatric T-cell acute lymphoblastic leukemia in Taiwan. Pediatr Blood Cancer 2019; 66 (1): e27496. doi: 10.1002/PBC.27496
- Liu Y., Easton J., Shao Y., Maciaszek J., Wang Z., Wilkinson M.R., et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017; 49 (8): 1211–8. doi: 10.1038/NG.3909
- Wendorff A.A., Quinn S.A., Rashkovan M., Madubata C.J., Ambesi-Impiombato A., Litzow M.R., et al. Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem Cell Activity in T-ALL. Cancer Discov 2019; 9 (3): 436–51. doi: 10.1158/2159-8290.CD-18-1005
- Ciofani M., Zúñiga-Pflücker J.C. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005; 6 (9): 881–8. doi: 10.1038/NI1234
- Palomero T., Dominguez M., Ferrando A.A. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 2008; 7 (8): 965. doi: 10.4161/CC.7.8.5753
- Aifantis I., Gounari F., Scorrano L., Borowski C., Von Boehmer H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-kappaB and NFAT. Nat Immunol 2001; 2 (5): 403–9. doi: 10.1038/87704
- Medyouf H., Alcalde H., Berthier C., Guillemin M.C., Dos Santos N.R., Janin A., et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med 2007; 13 (6): 736–41. doi: 10.1038/NM1588
- Sicinska E., Aifantis I., Le Cam L., Swat W., Borowski C., Yu Q., et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003; 4 (6): 451–61. doi: 10.1016/S1535-6108(03)00301-5
- Vilimas T., Mascarenhas J., Palomero T., Mandal M., Buonamici S., Meng F., et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007; 13 (1): 70–7. doi: 10.1038/NM1524
- Allman D., Karnell F.G., Punt J.A., Bakkour S., Xu L., Myung P., et al. Separation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells. J Exp Med 2001; 194 (1): 99. doi: 10.1084/JEM.194.1.99
- Aifantis I., Raetz E., Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8 (5): 380–90. doi: 10.1038/NRI2304
- Swainson L., Kinet S., Mongellaz C., Sourisseau M., Henriques T., Taylor N. IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 2007; 109 (3): 1034–42. doi: 10.1182/BLOOD-2006-06-027912
- Ripperger T., Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet 2016; 59 (3): 133–42. doi: 10.1016/j.ejmg.2015.12.014.
Supplementary files
