Молекулярный патогенез T-лимфобластной лимфомы
- Авторы: Днепровский В.Р.1, Фёдорова А.С.1, Абрамов Д.С.1, Волчков Е.В.1,2, Мякова Н.В.1
-
Учреждения:
- ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
- Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы»
- Выпуск: Том 23, № 1 (2024)
- Страницы: 172-179
- Раздел: ОБЗОР ЛИТЕРАТУРЫ
- Статья получена: 31.01.2024
- Статья одобрена: 08.04.2024
- Статья опубликована: 08.04.2024
- URL: https://hemoncim.com/jour/article/view/816
- DOI: https://doi.org/10.24287/1726-1708-2024-23-1-172-179
- ID: 816
Цитировать
Полный текст
Аннотация
Т-лимфобластная лимфома (Т-ЛБЛ) занимает одно из ведущих мест в структуре неходжкинских лимфом у детей. По классификации Всемирной организации здравоохранения 2022 г. Т-ЛБЛ и острый Т-лимфобластный лейкоз рассматриваются в рамках единой нозологической категории, так как они имеют один и тот же морфологический субстрат – предшественники Т-клеток. За последние годы в лечении этого заболевания достигнуты определенные успехи, однако прогноз при рецидивах и рефрактерном течении до сих пор остается крайне неблагоприятным. Одним из перспективных направлений, способных повысить эффективность терапии, является внедрение новых схем лечения, учитывающих молекулярно-генетические особенности данной опухоли. В настоящем обзоре подробно рассматриваются молекулярные аспекты патогенеза Т-ЛБЛ.
Ключевые слова
Об авторах
В. Р. Днепровский
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Email: dneprovsky.vladimir@mail.ru
ORCID iD: 0009-0002-3896-6612
Владимир Романович Днепровский
Москва
РоссияА. С. Фёдорова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Email: fyodorova_hannah@mail.ru
ORCID iD: 0000-0002-4699-1730
Анна Сергеевна Фёдорова
Москва
РоссияД. С. Абрамов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Email: abramovd_s@bk.ru
ORCID iD: 0000-0003-3664-2876
Дмитрий Сергеевич Абрамов
Москва
РоссияЕ. В. Волчков
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы»
Автор, ответственный за переписку.
Email: volchcov.egor@yandex.ru
ORCID iD: 0000-0002-2574-1636
Егор Васильевич Волчков, врач-гематолог
отдел исследования лимфом
117997; ул. Саморы Машела, 1; Москва
РоссияН. В. Мякова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Email: nmiakova@mail.ru
ORCID iD: 0000-0002-4779-1896
Наталья Валерьевна Мякова
Москва
РоссияСписок литературы
- Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B. de O., Berti E., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36 (7): 1720–48. doi: 10.1038/S41375-022-01620-2
- Bassan R., Maino E., Cortelazzo S. Lymphoblastic lymphoma: An updated review on biology, diagnosis, and treatment. Eur J Haematol 2016; 96 (5): 447–60. doi: 10.1111/EJH.12722
- Burkhardt B., Zimmermann M., Oschlies I., Niggli F., Mann G., Parwaresch R., et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol 2005; 131 (1): 39–49. doi: 10.1111/J.1365-2141.2005.05735.X
- van der Zwet J.C.G., Cordo’ V., Canté-Barrett K., Meijerink J.P.P. Multiomic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74: 100647. doi: 10.1016/J.JBIOR.2019.100647
- Kroeze E., Loeffen J.L.C., Poort V.M., Meijerink J.P.P. T-cell lymphoblastic lymphoma and leukemia: different diseases from a common premalignant progenitor? Blood Adv 2020; 4 (14): 3466–73. doi: 10.1182/BLOODADVANCES.2020001822
- Tasian S.K., Loh M.L., Hunger S.P. Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer 2015; 121 (20): 3577–90. doi: 10.1002/CNCR.29573
- van Vlierberghe P., Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122 (10): 3398–406. doi: 10.1172/JCI61269
- Soulier J., Clappier E., Cayuela J.M., Regnault A., García-Peydró M., Dombret H., et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106 (1): 274–86. doi: 10.1182/BLOOD-2004-10-3900
- Sanda T., Leong W.Z. TAL1 as a master oncogenic transcription factor in T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53: 7–15. doi: 10.1016/J.EXPHEM.2017.06.001
- Kraszewska M.D., Dawidowska M., Szczepański T., Witt M. T-cell acute lymphoblastic leukaemia: recent molecular biology findings. Br J Haematol 2012; 156 (3): 303–15. doi: 10.1111/J.1365-2141.2011.08957.X
- Bardelli V., Arniani S., Pierini V., Di Giacomo D., Pierini T., Gorello P. et al. T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12 (8): 1118. doi: 10.3390/GENES12081118
- Bonn B.R., Rohde M., Zimmermann M., Krieger D., Oschlies I., Niggli F., et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood 2013; 121 (16): 3153–60. doi: 10.1182/BLOOD-2012-12-474148
- Sinclair P.B., Sorour A., Martineau M., Harrison C.J., Mitchell W.A., O’Neill E., et al. A fluorescence in situ hybridization map of 6q deletions in acute lymphocytic leukemia: identification and analysis of a candidate tumor suppressor gene. Cancer Res 2004; 64 (12): 4089–98. doi: 10.1158/0008-5472.CAN-03-1871
- Burkhardt B., Moericke A., Klapper W., Greene F., Salzburg J., Damm-Welk C., et al. Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: Differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma 2008; 49 (3): 451–61. doi: 10.1080/10428190701824551
- Carrasco Salas P., Fernández L., Vela M., Bueno D., González B., Valentín J., et al. The role of CDKN2A/B deletions in pediatric acute lymphoblastic leukemia. Pediatr Hematol Oncol 2016; 33 (7–8): 415–22. doi: 10.1080/08880018.2016.1251518
- Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development. Science 1999; 284 (5415): 770–6. doi: 10.1126/SCIENCE.284.5415.770
- Deftos M.L., Bevan M.J. Notch signaling in T cell development. Curr Opin Immunol 2000; 12 (2): 166–72. doi: 10.1016/S0952-7915(99)00067-9
- Sanchez-Irizarry C., Carpenter A.C., Weng A.P., Pear W.S., Aster J.C., Blacklow S.C. Notch Subunit Heterodimerization and Prevention of Ligand-Independent Proteolytic Activation Depend, Respectively, on a Novel Domain and the LNR Repeats. Mol Cell Biol 2004; 24 (21): 9265. doi: 10.1128/MCB.24.21.9265-9273.2004
- Kopan R., Ilagan M.X.G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 2009; 137 (2): 216. doi: 10.1016/J.CELL.2009.03.045
- Bettenhausen B., Hrabe de Angelis M., Simon D., Guenet J.L., Gossler A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 1995; 121 (8): 2407–18. doi: 10.1242/DEV.121.8.2407
- Dunwoodie S.L., Henrique D., Harrison S.M., Beddington R.S.P. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 1997; 124 (16): 3065–76. doi: 10.1242/DEV.124.16.3065
- Shutter J.R., Scully S., Fan W., Richards W.G., Kitajewski J., Deblandre G.A. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000; 14 (11): 1313. doi: 10.1101/gad.14.11.1313
- Lindsell C.E., Shawber C.J., Boulter J., Weinmaster G. Jagged: a mammalian ligand that activates Notch1. Cell 1995; 80 (6): 909–17. doi: 10.1016/0092-8674(95)90294-5
- Shawber C., Boulter J., Lindsell C.E., Weinmaster G. Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev Biol 1996; 180 (1): 370–6. doi: 10.1006/DBIO.1996.0310
- Nam Y., Sliz P., Song L., Aster J.C., Blacklow S.C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 2006; 124 (5): 973–83. doi: 10.1016/J.CELL.2005.12.037
- Wu L., Sun T., Kobayashi K., Gao P., Griffin J.D. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 2002; 22 (21): 7688–00. doi: 10.1128/MCB.22.21.7688-7700.2002
- Kurooka H., Honjo T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 2000; 275 (22): 17211–20. doi: 10.1074/JBC.M000909200
- Jarriault S., Brou C., Logeat F., Schroeter E.H., Kopan R., Israel A. Signalling downstream of activated mammalian Notch. Nature 1995; 377 (6547): 355–8. doi: 10.1038/377355A0
- Weng A.P., Millholland J.M., Yashiro-Ohtani Y., Arcangeli M.L., Lau A., Wai C., et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20 (15): 2096–109. doi: 10.1101/GAD.1450406
- Rangarajan A., Talora C., Okuyama R., Nicolas M., Mammucari C., Oh H. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20 (13): 3427–36. doi: 10.1093/EMBOJ/20.13.3427
- Ronchini C., Capobianco A.J. Induction of Cyclin D1 Transcription and CDK2 Activity by Notchic: Implication for Cell Cycle Disruption in Transformation by Notchic. Mol Cell Biol 2001; 21 (17): 5925. doi: 10.1128/MCB.21.17.5925-5934.2001
- Adler S.H., Chiffoleau E., Xu L., Dalton N.M., Burg J.M., Wells A.D., et al. Notch signaling augments T cell responsiveness by enhancing CD25 expression. J Immunol 2003; 171 (6): 2896–903. doi: 10.4049/JIMMUNOL.171.6.2896
- Fang T.C., Yashiro-Ohtani Y., Del Bianco C., Knoblock D.M., Blacklow S.C., Pear W.S. Notch Directly Regulates Gata3 Expression during T Helper 2 Cell Differentiation. Immunity 2007; 27 (1): 100. doi: 10.1016/J.IMMUNI.2007.04.018
- Reizis B., Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 2002; 16 (3): 295–300. doi: 10.1101/gad.960702
- Malecki M.J., Sanchez-Irizarry C., Mitchell J.L., Histen G., Xu M.L., Aster J.C., et al. Leukemia-Associated Mutations within the NOTCH1 Heterodimerization Domain Fall into at Least Two Distinct Mechanistic Classes. Mol Cell Biol 2006; 26 (12): 4642. doi: 10.1128/MCB.01655-05
- Weng A.P., Ferrando A.A., Lee W., Morris IV J.P., Silverman L.B., Sanchez-Irizarry C., et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306 (5694): 269–71. doi: 10.1126/SCIENCE.1102160
- Welcker M., Clurman B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8 (2): 83–93. doi: 10.1038/NRC2290
- Chang B., Partha S., Hofmann K., Lei M., Goebl M., Harper J.W., et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86 (2): 263–74. doi: 10.1016/S0092-8674(00)80098-7
- Hao B., Oehlmann S., Sowa M.E., Harper J.W., Pavletich N.P. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 2007; 26 (1): 131–43. doi: 10.1016/J.MOLCEL.2007.02.022
- Park M.J., Taki T., Oda M., Watanabe T., Yumura-Yagi K., Kobayashi R., et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol 2009; 145 (2): 198–206. doi: 10.1111/J.1365-2141.2009.07607.X
- Öberg C., Li J., Pauley A., Wolf E., Gurney M., Lendahl U. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 2001; 276 (38): 35847–53. doi: 10.1074/JBC.M103992200
- Yada M., Hatakeyama S., Kamura T., Nishiyama M., Tsunematsu R., Imaki H., et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23 (10): 2116–25. doi: 10.1038/SJ.EMBOJ.7600217
- Kanei-Ishii C., Nomura T., Takagi T., Watanabe N., Nakayama K.I., Ishii S. Fbxw7 Acts as an E3 Ubiquitin Ligase That Targets c-Myb for Nemo-like Kinase (NLK)-induced Degradation. J Biol Chem 2008; 283 (45): 30540. doi: 10.1074/jbc.M804340200
- Wei W., Jin J., Schlisio S., Harper J.W., Kaelin W.G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8 (1): 25–33. doi: 10.1016/J.CCR.2005.06.005
- Mao J.H., Kim I.J., Wu D., Climent J., Hio C.K., DelRosario R., et al. FBXW7 Targets mTOR for Degradation and Genetically Cooperates with PTEN in Tumor Suppression. Science 2008; 321 (5895): 1499. doi: 10.1126/SCIENCE.1162981
- Anand S., Penrhyn-Lowe S., Venkitaraman A.R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003; 3 (1): 51–62. doi: 10.1016/S1535-6108(02)00235-0
- Li J., Pauley A.M., Myers R.L., Shuang R., Brashler J.R., Yan R., et al. SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem 2002; 82 (6): 1540–8. doi: 10.1046/J.1471-4159.2002.01105.X
- Koepp D.M., Schaefer L.K., Ye X., Keyomarsi K., Chu C., Harper J.W., et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 2001; 294 (5540): 173–7. doi: 10.1126/SCIENCE.1065203
- Crusio K.M., King B., Reavie L.B., Aifantis I. The ubiquitous nature of cancer: the role of the SCFFbw7 complex in development and transformation. Oncogene 2010; 29 (35): 4865. doi: 10.1038/ONC.2010.222
- Lee Y.R., Chen M., Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19 (9): 547–62. doi: 10.1038/S41580-018-0015-0
- Lee J.O., Yang H., Georgescu M.M., Di Cristofano A., Maehama T., Shi Y., et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 1999; 99 (3): 323–34. doi: 10.1016/S0092-8674(00)81663-3
- Stambolic V., Suzuki A., De la Pompa J.L., Brothers G.M., Mirtsos C., Sasaki T., et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95 (1): 29–39. doi: 10.1016/S0092-8674(00)81780-8
- Kane L.P., Murter B. Control of T lymphocyte fate decisions by PI3K signaling. F1000Research 2020; 9: F1000. doi: 10.12688/F1000RESEARCH.26928.1
- Boomer J.S., Green J.M. An Enigmatic Tail of CD28 Signaling. Cold Spring Harb Perspect Biol 2010; 2 (8): a002436. doi: 10.1101/CSHPERSPECT.A002436
- Tran H., Brunet A., Griffith E.C., Greenberg M.E. The many forks in FOXO’s road. Sci STKE 2003; 2003 (172): RE5. doi: 10.1126/STKE.2003.172.RE5
- Dijkers P.F., Birkenkamp K.U., Lam E.W.F., Shaun B Thomas N., Lammers J.W.J., Koenderman L., et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 2002; 156 (3): 531–42. doi: 10.1083/JCB.200108084
- Shin I., Yakes F.M., Rojo F., Shin N.-Y., Bakin A.V., Baselga J., et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8 (10): 1145–52. doi: 10.1038/NM759
- Datta S.R., Dudek H., Xu T., Masters S., Haian F., Gotoh Y., et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91 (2): 231–41. doi: 10.1016/S0092-8674(00)80405-5
- Cross D.A.E., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378 (6559): 785–9. doi: 10.1038/378785A0
- Diehl J.A., Cheng M., Roussel M.F., Sherr C.J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12 (22): 3499–511. doi: 10.1101/GAD.12.22.3499
- Yeh E., Cunningham M., Arnold H., Chasse D., Monteith T., Ivaldi G., et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 2004; 6 (4): 308–18. doi: 10.1038/NCB1110
- Mayo L.D., Donner D.B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001; 98 (20): 11598–603. doi: 10.1073/PNAS.181181198
- Huang J., Manning B.D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 2009; 37 (Pt 1): 217–22. doi: 10.1042/BST0370217
- Khanam T., Sandmann S., Seggewiss J., Ruether C., Zimmermann M., Norvil A.B., et al. Integrative genomic analysis of pediatric T-cell lymphoblastic lymphoma reveals candidates of clinical significance. Blood 2021; 137 (17): 2347–59. doi: 10.1182/BLOOD.2020005381
- Zuurbier L., Petricoin E.F., Vuerhard M.J., Calvert V., Kooi C., Buijs-Gladdines J.G.C.A.M., et al. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica 2012; 97 (9): 1405. doi: 10.3324/HAEMATOL.2011.059030
- Balbach S.T., Makarova O., Bonn B.R., Zimmermann M., Oschlies I., Klapper W., et al. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia 2016; 30 (4): 970–3. doi: 10.1038/LEU.2015.203
- Peschon J.J., Morrissey P.J., Grabstein K.H., Ramsdell F.J., Maraskovsky E., Gliniak B.C., et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994; 180 (5): 1955–60. doi: 10.1084/JEM.180.5.1955
- Chen D., Tang T.X., Deng H., Yang X.P., Tang Z.H. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12: 747324. doi: 10.3389/FIMMU.2021.747324
- Wang C., Kong L., Kim S., Lee S., Oh S., Jo S., et al. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int J Mol Sci 2022; 23 (18): 10412. doi: 10.3390/IJMS231810412
- Li Z., Song Y., Zhang Y., Li C., Wang Y., Xue W., et al. Genomic and outcome analysis of adult T-cell lymphoblastic lymphoma. Haematologica 2020; 105 (3): e107. doi: 10.3324/HAEMATOL.2019.220863
- Zenatti P.P., Ribeiro D., Li W., Zuurbier L., Silva M.C., Paganin M., et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43 (10): 932–41. doi: 10.1038/NG.924
- Shochat C., Tal N., Gryshkova V., Birger Y., Bandapalli O.R., Cazzaniga G., et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 2014; 124 (1): 106–10. doi: 10.1182/BLOOD-2013-10-529685
- Canté-Barrett K., Spijkers-Hagelstein J.A.P., Buijs-Gladdines J.G.C.A.M., Uitdehaag J.C.M., Smits W.K., Van Der Zwet J., et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30 (9): 1832–43. doi: 10.1038/LEU.2016.83
- Eisa Y.A., Guo Y., Yang F.C. The Role of PHF6 in Hematopoiesis and Hematologic Malignancies. Stem cell Rev reports 2023; 19 (1): 67–75. doi: 10.1007/S12015-022-10447-4
- Feliciano Y.M.S., Bartlebaugh J.M.E., Liu Y., Rivera F.J.S., Bhutkar A., Weintraub A.S., et al. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev 2017; 31 (10): 973–89. doi: 10.1101/GAD.295857.117
- Oh S., Boo K., Kim J., Baek S.A., Jeon Y., You J., et al. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Res 2020; 48 (16): 9037–52. doi: 10.1093/NAR/GKAA626
- Warmerdam D.O., Alonso‐de Vega I., Wiegant W.W., van den Broek B., Rother M.B., Wolthuis R.M., et al. PHF6 promotes non-homologous end joining and G2 checkpoint recovery. EMBO Rep 2020; 21 (1): e48460. doi: 10.15252/EMBR.201948460
- Todd M.A.M., Picketts D.J. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. J Proteome Res 2012; 11 (8): 4326–37. doi: 10.1021/PR3004369
- Liu Z., Li F., Ruan K., Zhang J., Mei Y., Wu J., et al. Structural and functional insights into the human Börjeson-Forssman-Lehmann syndrome-associated protein PHF6. J Biol Chem 2014; 289 (14): 10069–83. doi: 10.1074/JBC.M113.535351
- Wang J., Leung J.W.C., Gong Z., Feng L., Shi X., Chen J. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem 2013; 288 (5): 3174–83. doi: 10.1074/JBC.M112.414839
- van Vlierberghe P., Palomero T., Khiabanian H., Van Der Meulen J., Castillo M., Van Roy N., et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 2010; 42 (4): 338–42. doi: 10.1038/NG.542
- Mori T., Nagata Y., Makishima H., Sanada M., Shiozawa Y., Kon A., et al. Somatic PHF6 mutations in 1760 cases with various myeloid neoplasms. Leukemia 2016; 30 (11): 2270–3. doi: 10.1038/LEU.2016.212
- Miyagi S., Sroczynska P., Kato Y., Nakajima-Takagi Y., Oshima M., Rizq O., et al. The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood 2019; 133 (23): 2495–506. doi: 10.1182/BLOOD.2019000468
- Yeh T.C., Liang D.C., Liu H.C., Jaing T.H., Chen S.H., Hou J.Y., et al. Clinical and biological relevance of genetic alterations in pediatric T-cell acute lymphoblastic leukemia in Taiwan. Pediatr Blood Cancer 2019; 66 (1): e27496. doi: 10.1002/PBC.27496
- Liu Y., Easton J., Shao Y., Maciaszek J., Wang Z., Wilkinson M.R., et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017; 49 (8): 1211–8. doi: 10.1038/NG.3909
- Wendorff A.A., Quinn S.A., Rashkovan M., Madubata C.J., Ambesi-Impiombato A., Litzow M.R., et al. Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem Cell Activity in T-ALL. Cancer Discov 2019; 9 (3): 436–51. doi: 10.1158/2159-8290.CD-18-1005
- Ciofani M., Zúñiga-Pflücker J.C. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005; 6 (9): 881–8. doi: 10.1038/NI1234
- Palomero T., Dominguez M., Ferrando A.A. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 2008; 7 (8): 965. doi: 10.4161/CC.7.8.5753
- Aifantis I., Gounari F., Scorrano L., Borowski C., Von Boehmer H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-kappaB and NFAT. Nat Immunol 2001; 2 (5): 403–9. doi: 10.1038/87704
- Medyouf H., Alcalde H., Berthier C., Guillemin M.C., Dos Santos N.R., Janin A., et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med 2007; 13 (6): 736–41. doi: 10.1038/NM1588
- Sicinska E., Aifantis I., Le Cam L., Swat W., Borowski C., Yu Q., et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003; 4 (6): 451–61. doi: 10.1016/S1535-6108(03)00301-5
- Vilimas T., Mascarenhas J., Palomero T., Mandal M., Buonamici S., Meng F., et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007; 13 (1): 70–7. doi: 10.1038/NM1524
- Allman D., Karnell F.G., Punt J.A., Bakkour S., Xu L., Myung P., et al. Separation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells. J Exp Med 2001; 194 (1): 99. doi: 10.1084/JEM.194.1.99
- Aifantis I., Raetz E., Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8 (5): 380–90. doi: 10.1038/NRI2304
- Swainson L., Kinet S., Mongellaz C., Sourisseau M., Henriques T., Taylor N. IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 2007; 109 (3): 1034–42. doi: 10.1182/BLOOD-2006-06-027912
- Ripperger T., Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet 2016; 59 (3): 133–42. doi: 10.1016/j.ejmg.2015.12.014.
Дополнительные файлы



