Diagnosis of type 2B von Willebrand disease in children

Cover Page

Cite item

Full Text

Abstract

Even though von Willebrand disease (vWD) is a common bleeding disorder, it comprises some rare types as well. Type 2B vWD is usually diagnosed in 3-5% of all vWD cases. The important diagnostic markers of this disease subtype include thrombocytopenia, decreased von Willebrand factor (vWF) activity, increased low-dose ristocetin-induced platelet aggregation, and identification of mutations in exon 28 of the vWF gene. The purpose of this study was to highlight challenges associated with the differential diagnosis of vWD as well as to demonstrate heterogeneous clinical and laboratory signs of type 2B vWD. Here, we retrospectively analyzed all the cases of type 2B vWD diagnosed at the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology. For the analysis, we used de-identified data collected during routine clinical care and hence did not need an approval from the Local Ethics Committee. All the patients had undergone medical history assessment and laboratory investigations and had been evaluated for bleeding disorders using the Pediatric Bleeding Questionnaire. Type 2B vWD was diagnosed based on the following criteria: bleeding symptoms, thrombocytopenia, significantly decreased vWF ristocetin-cofactor activity, normal or decreased vWF antigen levels, ristocetin-cofactor activity/vWF antigen ratio < 0.7; increased low-dose ristocetin-induced platelet aggregation. Type 2B vWD was diagnosed in 7 patients. Out of these, 5 had bleeding symptoms and 2 had a family history of vWD. All the children had been diagnosed with thrombocytopenia during their first year of life. Five patients had been initially diagnosed with immune thrombocytopenia, with one girl having a family history of vWD. All the patients with diagnosed immune thrombocytopenia had been treated with intravenous immunoglobulins, and one child had also undergone treatment with corticosteroids. Three patients had had to be admitted to hospital for major bleeding before they were diagnosed with vWD. All the patients had the typical laboratory phenotype, and five out of them demonstrated decreased vWF collagen-binding activity. In two patients with positive family history, the diagnosis was genetically verified, with both of them harboring mutations in exons 20 and 28 of the vWF gene. Our findings are consistent with the literature suggesting how challenging differential diagnosis of this vWD type is. Still, a low-dose ristocetin-induced platelet aggregation test along with other laboratory investigations can be used to effectively identify the type 2B vWD phenotype. In Russia, factor replacement therapy remains the primary treatment option for patients with any type of vWD.

About the authors

E. M. Golovina

Regional Children’s Clinical Hospital;
The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: golovinhelen@yandex.ru
ORCID iD: 0000-0003-4452-5821

Elena M. Golovina, a research technician at the Laboratory of Hemostasis Disorders at the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; a hematologist at the Department of Pediatric Oncology and Hematology with Chemotherapy at Regional Children’s Clinical Hospital

339 Rifle Division St. 14, Rostov-on-Don 344015

Russian Federation

A. V. Poletaev

The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation

ORCID iD: 0000-0001-5209-2099

Moscow

Russian Federation

E. A. Seregina

The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation;
Center for Theoretical Problems of Physical and Chemical Pharmacology

ORCID iD: 0000-0002-7534-3863

Moscow

Russian Federation

D. V. Fedorova

The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation

ORCID iD: 0000-0003-4567-1871

Moscow

Russian Federation

A. V. Pshonkin

The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation

ORCID iD: 0000-0002-2057-2036

Moscow

Russian Federation

P. A. Zharkov

The Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation

ORCID iD: 0000-0003-4384-6754

Moscow

Russian Federation

References

  1. Capdevila X., Castex A., Amiral J., et al. Preoperative screening for von Willebrand disease type 1: low yield and limited ability to predict bleeding. J Lab Clin Med 1999; 134 (6): 605–9. doi: 10.1016/s0022-2143(99)90100-2
  2. Werner E.J., Broxson E.H., Tucker E.L., Giroux D.S., Shults J., Abshire T.C. Prevalence of von Willebrand disease in children: a multiethnic study. J Pediatr 1993; 123 (6): 893–8. doi: 10.1016/s0022-3476(05)80384-1
  3. Sadler J.E., Mannucci P.M., Berntorp E., Bochkov N., Boulyjenkov V., Ginsburg D., et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost 2000; 84: 160–74.
  4. Starke R.D., Ferraro F., Paschalaki K.E., Dryden N.H., McKinnon T.A., Sutton R.E., et al. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011; 117 (3): 1071– 80. doi: 10.1182/blood-2010-01-264507
  5. Nichols W.L., Hultin M.B., James A.H., Manco-Johnson M.J., Montgomery R.R., Ortel T.L., et al. von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 2008; 14 (2): 171–232. doi: 10.1111/j.1365-2516.2007.01643.x
  6. James P.D., Connell N.T., Ameer B., Di Paola J., Eikenboom J., Giraud N., et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv 2021; 5 (1): 280–300. doi: 10.1182/bloodadvances.2020003265
  7. Favaloro E.J., Dean E., Arunachalam S., Vong R., Mohammed S. Evaluating errors in the laboratory identification of von Willebrand disease using contemporary von Willebrand factor assays. Pathology 2022; 54 (3): 308–17. doi: 10.1016/j.pathol.2021.07.001
  8. Proud L., Ritchey A.K. Management of type 2b von Willebrand disease in the neonatal period. Pediatr Blood Cancer 2017; 64: 103–5. doi: 10.1002/pbc.26168
  9. Hepner D.L., Tsen L.C. Severe Thrombocytopenia, Type 2B von Willebrand Disease and Pregnancy. Anesthesiology 2004; 101: 1465–7. doi: 10.1097/00000542-200412000-00029
  10. Fan J., Ling J., Zhou H., He J., Hu S. Case Report: An Infant with Severe Thrombocytopenia Diagnosed with Type 2B von Willebrand Disease Due To a De Novo p.Val1316Met Mutation. Turk J Haematol 2020; 37 (4): 296–8. doi: 10.4274/tjh.galenos.2020.2020.0213
  11. Kruse-Jarres R., Johnsen J.M. How I treat type 2B von Willebrand disease. Blood 2018; 131 (12): 1292– 300. doi: 10.1182/blood-2017-06-742692
  12. Almomani M.H., Mangla A. Bernard Soulier Syndrome. [Updated 2022 May 14]. In: StatPearls [Electronic resource]. Treasure Island (FL): StatPearls Publishing; 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK557671 (accessed 22.10.2024).
  13. Bury L., Malara A., Momi S., Petito E., Balduini A., Gresele P. Mechanisms of thrombocytopenia in platelet-type von Willebrand disease. Haematologica 2019; 104 (7): 1473–81. doi: 10.3324/haematol.2018.200378
  14. Othman M. Platelet-type von Willebrand disease: a rare, often misdiagnosed and underdiagnosed bleeding disorder. Semin Thromb Hemost 2011; 37 (5): 464–9. doi: 10.1055/s0031-1281030
  15. Malik M.A., Masab M. Wiskott–Aldrich Syndrome. [Updated 2022 Jun 27]. In: StatPearls [Electronic resource]. Treasure Island (FL): StatPearls Publishing; 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK539838 (accessed 22.10.2024).
  16. Nurden A.T., Federici A.B., Nurden P. Altered megakaryocytopoiesis in von Willebrand type 2B disease. J Thromb Haemost 2009; 7 Suppl 1: 277–81. doi: 10.1111/j.1538-7836.2009.03371.x
  17. Dame C., Sutor A.H. Primary and secondary thrombocytosis in childhood. Br J Haematol 2005; 129: 165–77. doi: 10.1111/j.1365-2141.2004.05329.x
  18. Sato T., Hiramatsu R., Iwaoka T., Fujii Y., Shimada T., Umeda T. Changes of Platelets, Serum Lactic Dehydrogenase, g-Glutamyltranspeptidase, Choline Esterase and Creatine Phosphokinase Levels in Patients with Cushing's Syndrome. Tohoku J Exp Med 1984; 142 (2): 195–200. doi: 10.1620/tjem.142.195
  19. Chopra А., Kumar R., Kishore K., Tandon N., Yusuf T., Kumar S., et al. Effect of glucocorticoids on von Willebrand factor levels and its correlation with von Willebrand factor gene promoter polymorphism. Blood Coagul Fibrinolysis 2012; 23 (6): 514–9. doi: 10.1097/MBC.0b013e3283548dfc
  20. Yuan Z.H., Zhu P. [Relationship of von Willebrand factor gene single-nucleotide polymorphism with thrombosis diseases]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18 (2): 549–52. [Chinese].
  21. Nguyen A., Repesse Y., Ebbo M., Allenbach Y., Benveniste O., Vallat J.M., et al. IVIg increases interleukin-11 levels, which in turn contribute to increased platelets, VWF and FVIII in mice and humans. Clin Exp Immunol 2021; 204 (2): 258–66. doi: 10.1111/cei.13580
  22. Denis C.V., Kwack K., Saffaripour S., Maganti S., André P., Schaub R.G., Wagner D.D. Interleukin 11 significantly increases plasma von Willebrand factor and factor VIII in wild type and von Willebrand disease mouse models. Blood 2001; 97 (2): 465–72. doi: 10.1182/blood. v97.2.465
  23. Ragni M.V., Novelli E.M., Murshed A., Merricks E.P., Kloos M.T., Nichols T.C. Phase II prospective open-label trial of recombinant interleukin-11 in desmopressin-unresponsive von Willebrand disease and mild or moderate haemophilia A. Thromb Haemost 2013; 109 (2): 248–54. doi: 10.1160/TH12-06-0447
  24. Wang Y., Niu Z.Y., Guo Y.J., Wang L.H., Lin F.R., Zhang J.Y. IL-11 promotes the treatment efficacy of hematopoietic stem cell transplant therapy in aplastic anemia model mice through a NF-kB/microRNA-204/ thrombopoietin regulatory axis. Exp Mol Med 2017; 49 (12): e410. doi: 10.1038/emm.2017.217
  25. Bonduel M., Frontroth J.P., Hepner M., Sciuccati G., Feliu-Torres A., Pieroni G. Von Willebrand disease in children: diagnosis and management of a pediatric cohort in one single center in Argentina. Semin Thromb Hemost 2011; 37 (5): 560–7. doi: 10.1055/s-0031-1281043
  26. Kranzhöfer D., Pavlova A., Schneider H., Franck P., Glonnegger H., Büchsel M., et al. Type 2B von Willebrand Disease: Early Manifestation as Neonatal Thrombocytopenia. Hamostaseologie 2021; 41 (6): 469– 74. doi: 10.1055/a-1665-6185
  27. Chapman K., Prasad R., Mohammed S., Favaloro E.J. 2B or not 2B? A diagnosis of von Willebrand disease a lifetime of 86 years in the making. Blood Coagul Fibrinolysis 2021; 32 (3): 229–33. doi: 10.1097/MBC.0000000000000994
  28. Espitia O., Ternisien C., Agard C., Boisseau P., Denis C.V., Fouassier M. Use of a thrombopoietin receptor agonist in von Willebrand disease type 2B (p.V1316M) with severe thrombocytopenia and intracranial hemorrhage. Platelets 2017; 28 (5): 518–20. doi: 10.1080/09537104.2016.1246717
  29. Zanon E., Pasca S., Bertomoro A., Mardari R., Simioni P. Spontaneous recurrent intracranial haemorrhage in a woman with type 2B von Willebrand disease: A clinical case and a brief literature review. Haemophilia 2019; 25 (4): e282–5. doi: 10.1111/hae.13742
  30. Seidizadeh O., Baronciani L., Pagliari M.T., Cozzi G., Colpani P., Cairo A., et al. Phenotypic and genetic characterizations of the Milan cohort of von Willebrand disease type 2. Blood Adv 2022; 6 (13): 4031–40. doi: 10.1182/bloodadvances.2022007216
  31. Poletaev A.V., Seregina E.A., Pshonkin A.V., Karamyan N.A., Fedorova D.V., Plyasunova S.A., Zharkov P.A. Von Willebrand factor multimeric assay: novel diagnostics capabilities. Russian Journal of Pediatric Hematology and Oncology 2021; 8 (2): 35–41. (In Russ.) doi: 10.21682/2311-1267-2021-8-2-35-41
  32. Frontroth J.P., Favaloro E.J. Ristocetin-Induced Platelet Aggregation (RIPA) and RIPA Mixing Studies. Methods Mol Biol 2017; 1646: 473– 94. doi: 10.1007/978-1-4939-7196-1_35
  33. DiGiandomenico S., Christopherson P.A., Haberichter S.L., Abshire T.C., Montgomery R.R., Flood V.H.; Zimmerman Program Investigators. Laboratory variability in the diagnosis of type 2 VWD variants. J Thromb Haemost 2021; 19 (1): 131–8. doi: 10.1111/jth.15129
  34. Othman M., Favaloro E.J. 2B von Willebrand disease diagnosis: Considerations reflecting on 2021 multisociety guidelines. Res Pract Thromb Haemost 2021; 5 (8): e12635. doi: 10.1002/rth2.12635
  35. Sacco M., Lancellotti S., Ferrarese M., Bernardi F., Pinotti M., Tardugno M., et al. Noncanonical type 2B von Willebrand disease associated with mutations in the VWF D'D3 and D4 domains. Blood Adv 2020; 4 (14): 3405–15. doi: 10.1182/bloodadvances.2020002334
  36. Jeraiby M.A., Sophie S., Caron C., Campos L., Brigitte T. Von Willebrand disease type 2B with a novel mutation in the VWF gene. Ann Saudi Med 2021; 41 (1): 59–61. doi: 10.5144/0256-4947.2021.59
  37. Gindele R., Kerényi A., Kállai J., Pfliegler G., Schlammadinger Á., Szegedi I., et al. Resolving Differential Diagnostic Problems in von Willebrand Disease, in Fibrinogen Disorders, in Prekallikrein Deficiency and in Hereditary Hemorrhagic Telangiectasia by Next-Generation Sequencing. Life (Basel) 2021; 11 (3): 202. doi: 10.3390/life11030202
  38. Rugeri L., Harroche A., Repessé Y., Desprez D., Petesch B.P., Chamouni P., et al. Effectiveness of long-term prophylaxis using pdFVIII/ VWF concentrate in patients with inherited von Willebrand disease. Eur J Haematol 2022; 109 (1): 109– 17. doi: 10.1111/ejh.13778
  39. Espitia O., Ternisien C., Agard C., Boisseau P., Denis C.V., Fouassier M. Use of a thrombopoietin receptor agonist in von Willebrand disease type 2B (p.V1316M) with severe thrombocytopenia and intracranial hemorrhage. Platelets 2017; 28 (5): 518–20. doi: 10.1080/09537104.2016.1246717
  40. Nurden A.T,. Federici A.B., Nurden P. Altered megakaryocytopoiesis in von Willebrand type 2B disease. J Thromb Haemost 2009; 7 Suppl 1: 277–81. doi: 10.1111/j.1538-7836.2009.03371.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Golovina E.M., Poletaev A.V., Seregina E.A., Fedorova D.V., Pshonkin A.V., Zharkov P.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.